

JIBC PCP Nephrology Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the function of the renal medulla?**
 - A. It produces erythropoietin**
 - B. It houses the nephrons**
 - C. It helps concentrate urine**
 - D. It filters waste products**
- 2. What is the result of complete failure to produce erythropoietin?**
 - A. Increased blood volume**
 - B. Anemia**
 - C. Hematoma formation**
 - D. Increased blood pressure**
- 3. What type of pain do kidney stones typically start as?**
 - A. Sharp pain**
 - B. Visceral pain in one flank**
 - C. Chronic abdominal pain**
 - D. Localized pain near the kidneys**
- 4. What is a nephron and its role in renal function?**
 - A. A structural unit that transports urine**
 - B. The basic unit responsible for filtering blood**
 - C. A type of kidney stone**
 - D. A cell type present in the renal cortex**
- 5. What is acute kidney injury (AKI)?**
 - A. A gradual loss of kidney function**
 - B. A sudden decrease in kidney function**
 - C. A permanent loss of kidney function**
 - D. A condition characterized by kidney enlargement**
- 6. Which area can pyelonephritis cause referred pain?**
 - A. Lower back and abdomen**
 - B. Neck and shoulder**
 - C. Chest and ribcage**
 - D. Hip and thigh**

7. What is referred pain?

- A. The sensation of pain that is felt in a location different from the source of pain**
- B. Pain that only occurs during physical activity**
- C. A localized pain at the injury site**
- D. Pain that occurs after surgery**

8. Which type of acute renal failure (ARF) is least likely to occur?

- A. Prerenal ARF**
- B. Intrarenal ARF**
- C. Postrenal ARF**
- D. Chronic renal failure**

9. What is the primary purpose of renal imaging studies?

- A. To assess overall health and wellness**
- B. To evaluate kidney structure and any abnormalities**
- C. To determine blood pressure levels**
- D. To analyze urine composition**

10. Which disease combination accounts for more than half of all cases of renal failure?

- A. Diabetes and Obesity**
- B. Diabetes and Hypertension**
- C. Hypertension and Glomerulonephritis**
- D. Cancer and Diabetes**

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. B
6. B
7. A
8. C
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What is the function of the renal medulla?

- A. It produces erythropoietin
- B. It houses the nephrons
- C. It helps concentrate urine**
- D. It filters waste products

The renal medulla plays a crucial role in the kidneys' ability to concentrate urine, which is essential for maintaining the body's fluid balance and electrolyte levels. This is achieved through a process known as counter-current multiplication, which occurs in the loops of Henle within the renal medulla. The medulla contains a higher concentration of salts (such as sodium and chloride) compared to the renal cortex, which draws water out of the filtrate in the collecting ducts as the filtrate passes through, thereby concentrating the urine. This mechanism allows the kidneys to excrete waste while conserving water, particularly in states of dehydration or increased fluid demand. Other functions, such as the production of erythropoietin, primarily occur in the kidneys' cortex, and while nephrons are found throughout the kidney, the renal medulla specifically is not the primary housing of nephrons. Instead, the nephron structures like the glomerulus and proximal tubule are in the cortex, with portions of the nephron extending into the medulla. The filtering of waste products is primarily the function of the glomerulus and does not specifically pertain to the medulla alone. Thus, the role of the renal medulla in concentrating urine is vital to its function in renal

2. What is the result of complete failure to produce erythropoietin?

- A. Increased blood volume
- B. Anemia**
- C. Hematoma formation
- D. Increased blood pressure

The correct answer is anemia, which occurs as a direct consequence of the inability to produce sufficient erythropoietin. Erythropoietin is a hormone primarily produced by the kidneys, and its primary function is to stimulate the production of red blood cells in the bone marrow. When the kidneys fail to produce erythropoietin, the bone marrow receives little to no stimulus to enhance red blood cell production, leading to a reduced number of red blood cells in circulation. Anemia is characterized by a decrease in the concentration of hemoglobin, which can result in symptoms such as fatigue, weakness, and pallor because of inadequate oxygen delivery to tissues. Without erythropoietin, the body cannot maintain its red blood cell count, and this deficiency is what ultimately leads to the clinical manifestation of anemia. Other options such as increased blood volume, hematoma formation, and increased blood pressure do not directly result from a lack of erythropoietin. In fact, anemia would typically be associated with a decreased blood volume as the number of red blood cells declines. Moreover, hematoma formation is related to bleeding or clotting disorders and is not influenced by erythropoietin levels. Lastly, decreased red blood cell levels could

3. What type of pain do kidney stones typically start as?

- A. Sharp pain
- B. Visceral pain in one flank**
- C. Chronic abdominal pain
- D. Localized pain near the kidneys

Kidney stones typically begin as visceral pain in one flank. This initial type of pain often arises from the stretch and irritation of the ureter as the stone moves through it. Visceral pain is usually difficult to localize and can present as a dull ache or a cramping sensation, which is common in this context. As the stone progresses and causes increased obstruction or irritation, the pain may become more intense and sharp, but it is the visceral nature of the initial pain that characterizes the onset of kidney stone-related discomfort. This type of pain is often referred to the flank or lower abdomen, aligning with the anatomy of the urinary tract and how the pain is perceived by the body. In contrast, while sharp pain, chronic abdominal pain, and localized pain near the kidneys might occur later in the course of kidney stone disease or with other conditions, they do not accurately represent the typical starting point of pain associated with kidney stones.

4. What is a nephron and its role in renal function?

- A. A structural unit that transports urine
- B. The basic unit responsible for filtering blood**
- C. A type of kidney stone
- D. A cell type present in the renal cortex

A nephron is fundamentally the basic structural and functional unit of the kidney, playing a crucial role in renal function. Each kidney contains approximately one million nephrons that are responsible for filtering blood, removing waste products, and regulating fluid and electrolyte balance. The filtration process begins in the glomerulus, where blood is filtered through a network of capillaries. This allows for the separation of waste products and excess substances while retaining larger molecules like proteins and blood cells within the bloodstream. Subsequently, the filtrate passes through various sections of the nephron, including the proximal convoluted tubule, loop of Henle, and distal convoluted tubule, where further processing occurs to reabsorb necessary substances and secrete additional wastes. This ability to filter blood and reclaim valuable substances is central to maintaining homeostasis in the body, making the nephron integral to renal function. Understanding this role emphasizes the importance of nephron health in overall kidney function and systemic well-being.

5. What is acute kidney injury (AKI)?

- A. A gradual loss of kidney function
- B. A sudden decrease in kidney function**
- C. A permanent loss of kidney function
- D. A condition characterized by kidney enlargement

Acute kidney injury (AKI) is best described as a sudden decrease in kidney function. This condition typically occurs over hours to days and is marked by an increase in serum creatinine, a decrease in urine output, or both. The acute nature of the injury differentiates it from chronic kidney disease, where the loss of kidney function is more gradual and typically irreversible. The suddenness of AKI can result from various causes, such as dehydration, obstruction of the urinary tract, medication effects, or direct damage to the kidneys from toxins or ischemia. Recognizing AKI promptly is crucial for management, as it may be reversible if the underlying cause is addressed in a timely manner. Other options describe conditions or processes that are inconsistent with AKI. For instance, a gradual loss of kidney function aligns more with chronic kidney disease rather than the acute nature of AKI. A permanent loss of kidney function suggests irreversible damage typically seen in end-stage renal disease, while kidney enlargement refers to a physical change that can occur due to various reasons but does not define the acute functional changes associated with AKI.

6. Which area can pyelonephritis cause referred pain?

- A. Lower back and abdomen
- B. Neck and shoulder**
- C. Chest and ribcage
- D. Hip and thigh

The correct choice regarding referred pain caused by pyelonephritis is the area associated with the lower back and abdomen. Pyelonephritis, which is an infection of the kidney, typically presents with symptoms that are localized to the flank area and may radiate to the lower back or abdomen due to the anatomical connections between the kidneys, ureters, and the surrounding structures. In cases of pyelonephritis, the inflammation and infection can irritate the surrounding nerves, which can then create referred pain sensations in the lower back and abdomen. This is consistent with the somatic and visceral pain pathways, where pain from the internal organs can be perceived in more superficial structures. The interplay between the renal and lower back regions explains why individuals with pyelonephritis may experience discomfort in the lower back. The options involving the neck and shoulder, chest and ribcage, or hip and thigh do not typically align with the patterns of referred pain associated with kidney infections. These areas either represent different pain syndromes or are related to other organic problems not directly associated with renal pathologies. Therefore, the most appropriate area for referred pain from pyelonephritis is indeed the lower back and abdomen.

7. What is referred pain?

A. The sensation of pain that is felt in a location different from the source of pain

B. Pain that only occurs during physical activity

C. A localized pain at the injury site

D. Pain that occurs after surgery

Referred pain is characterized by the sensation of pain that is perceived in an area of the body that is different from the actual source of the pain. This phenomenon occurs because the nerves that transmit pain signals from various parts of the body often converge in the spinal cord or brain, leading to the brain misinterpreting the location of the pain. For example, a person experiencing a heart attack may feel pain in their jaw or left arm rather than directly in the chest. Understanding referred pain is essential in diagnosing and treating various conditions, as recognizing the correct site of pain can lead healthcare providers to identify the underlying issue more accurately. In contrast, other options describe types of pain based on location, activity, and timing, which do not align with the definition of referred pain. Localized pain refers specifically to discomfort at the site of injury, while pain during physical activity describes a specific situation rather than a phenomenon. Lastly, pain that occurs after surgery is related to surgical recovery and does not fit the criteria for referred pain.

8. Which type of acute renal failure (ARF) is least likely to occur?

A. Prerenal ARF

B. Intrarenal ARF

C. Postrenal ARF

D. Chronic renal failure

Postrenal acute renal failure occurs due to obstruction in the urinary tract, which leads to a backup of urine and increases pressure in the kidneys, ultimately affecting their ability to function properly. Although this type of failure can certainly occur, it is less common compared to prerenal and intrarenal acute renal failure. Prerenal acute renal failure usually arises from factors that reduce blood flow to the kidneys, such as dehydration or heart failure. Intrarenal acute renal failure results from direct damage to the kidney tissue itself, often due to toxins, infections, or ischemia. These conditions are more prevalent due to the numerous potential causes impacting either renal perfusion or kidney integrity. Chronic renal failure refers to a gradual loss of kidney function over a longer period, rather than a sudden onset as seen in acute renal failure. Thus, while it is a notable renal condition, it does not belong directly in the acute renal failure classification and therefore is not a type of acute renal failure. Given these distinctions, postrenal acute renal failure is perceived as the least likely to occur as an acute condition compared to the other forms of acute renal failure, which are more commonly triggered by various underlying immediate factors.

9. What is the primary purpose of renal imaging studies?

- A. To assess overall health and wellness
- B. To evaluate kidney structure and any abnormalities**
- C. To determine blood pressure levels
- D. To analyze urine composition

The primary purpose of renal imaging studies is to evaluate kidney structure and any abnormalities. These imaging techniques, such as ultrasound, CT scans, or MRI, are specifically designed to visualize the kidneys and surrounding structures, allowing for the assessment of their size, shape, and any potential issues such as tumors, cysts, or stones. By identifying structural abnormalities, healthcare providers can diagnose various renal conditions, determine their severity, and inform treatment plans. While assessing overall health and wellness can be part of the broader scope of medical examinations, it is not the specific aim of renal imaging studies. Similarly, while determining blood pressure levels and analyzing urine composition are valuable diagnostic tools in nephrology, they do not involve imaging techniques aimed at visualizing the anatomical structures of the kidneys. Ultimately, renal imaging is focused on identifying and characterizing any structural problems that may impact kidney function and overall health.

10. Which disease combination accounts for more than half of all cases of renal failure?

- A. Diabetes and Obesity
- B. Diabetes and Hypertension**
- C. Hypertension and Glomerulonephritis
- D. Cancer and Diabetes

The combination of diabetes and hypertension is indeed responsible for more than half of all cases of renal failure. Diabetes mellitus leads to diabetic nephropathy, a common cause of chronic kidney disease where elevated blood sugar levels damage the kidneys over time. Concurrently, hypertension accelerates kidney damage by increasing pressure on blood vessels, leading to further impairment of kidney function. The interplay between these two conditions creates a significant burden on the kidneys, often culminating in end-stage renal disease requiring dialysis or transplantation. In contrast, although obesity can contribute to kidney disease, it is often related to the development of diabetes and hypertension, rather than being a direct cause on its own. Similarly, while glomerulonephritis can cause renal failure, it does not account for as large a portion of cases as the combination of diabetes and hypertension. Lastly, cancer may affect kidney function depending on the type and treatment, but it does not have the same prevalence in causing renal failure as the well-documented effects of diabetes and hypertension. Thus, the noted combination captures the predominant risk factors leading to kidney failure in the population.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://jibcpnephrology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE