

Iowa State Geology Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What does undercutting refer to in the context of mass movement?**
 - A. Adding vegetation**
 - B. Human modifications**
 - C. Water erosion at the base of a slope**
 - D. Animal activity**

- 2. What major biological event occurred during the Mesozoic Era?**
 - A. Formation of the first land plants**
 - B. Re-establishment of biological diversity**
 - C. Appearance of large mammals**
 - D. Development of the first insects**

- 3. What typically happens to a river's elevation in its longitudinal profile?**
 - A. It remains constant throughout**
 - B. It decreases uniformly to the ocean**
 - C. It varies along its length**
 - D. It increases toward the source**

- 4. What distinguishes a thrust fault from a standard reverse fault?**
 - A. It has a steeper angle of dip**
 - B. It has a dip of less than 30 degrees**
 - C. It involves lateral movement only**
 - D. It is the most common type of fault**

- 5. What is a horst in geological terms?**
 - A. Down-dropped block bounded by normal faults**
 - B. Uplifted block bounded by normal faults**
 - C. A type of sedimentary structure**
 - D. Fault zone with significant lateral movement**

6. Which of the following is NOT a cause of earthquakes?

- A. Meteorite impact**
- B. Moving magma**
- C. Deep sea drilling**
- D. Landslides**

7. What is strain in geology?

- A. A force applied to rocks**
- B. The change in shape or volume of a material**
- C. The capacity of a rock to withstand stress**
- D. The pressure applied to rocks**

8. Which period is characterized by numerous ice ages?

- A. Neogene Period**
- B. Quaternary Period**
- C. Cretaceous Period**
- D. Paleogene Period**

9. Which type of stress is associated with reverse faults?

- A. Tensional stress**
- B. Compressional stress**
- C. Shear stress**
- D. Elastic stress**

10. What are the primary factors that affect slope stability?

- A. Type of rock and temperature**
- B. Water and particle cohesion**
- C. Age of rock and seismic activity**
- D. Friction and vegetation**

Answers

SAMPLE

1. C
2. B
3. C
4. B
5. B
6. C
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What does undercutting refer to in the context of mass movement?

- A. Adding vegetation
- B. Human modifications
- C. Water erosion at the base of a slope**
- D. Animal activity

Undercutting, in the context of mass movement, specifically refers to the process where water erosion occurs at the base of a slope. This type of erosion can weaken the stability of the slope by removing material from underneath, creating an overhang or a steep grade that may eventually collapse due to lack of support. When water flows against a slope, it can wash away soil and rock at its base, which undermines the structural integrity of the materials above. This erosion is a significant factor in natural processes such as landslides, as it can lead to a sudden failure of the slope when the support is no longer adequate to hold up the mass above. The other options involve different processes or actions that do not directly pertain to the erosive process at the base of slopes. Adding vegetation can help stabilize soil and reduce erosion but does not define undercutting. Human modifications might alter the landscape or affect erosion but do not represent the natural occurrence of undercutting. Animal activity could contribute to localized soil disturbance but is not synonymous with the broader geological process of undercutting caused by water erosion.

2. What major biological event occurred during the Mesozoic Era?

- A. Formation of the first land plants
- B. Re-establishment of biological diversity**
- C. Appearance of large mammals
- D. Development of the first insects

The Mesozoic Era, often referred to as the "Age of Reptiles," is particularly significant for the re-establishment and diversification of biological life following the massive Permian-Triassic extinction event that occurred at the end of the Paleozoic Era. This era marks a time when dinosaurs became the dominant terrestrial vertebrates, alongside the emergence of various other life forms, including early mammals and birds. The vast array of ecosystems that developed during the Mesozoic contributed to a flourishing of biodiversity, making this era critical for the subsequent evolutionary history of life on Earth. While the appearance of large mammals occurred later, predominantly in the Cenozoic Era, and the development of insects predates the Mesozoic, the re-establishment of biological diversity is a defining feature of this era. It signifies the recovery and adaptation of life after the previous mass extinction, setting the stage for future evolutionary developments. The formation of the first land plants is also an important event but is more closely associated with the earlier Paleozoic Era.

3. What typically happens to a river's elevation in its longitudinal profile?

- A. It remains constant throughout**
- B. It decreases uniformly to the ocean**
- C. It varies along its length**
- D. It increases toward the source**

In a river's longitudinal profile, elevation does indeed vary along its length. This variation occurs due to several factors, including the river's gradient, the underlying geology, and the influence of tributaries and other landscape features. Generally, as a river flows from its source in the mountains or higher elevations toward its mouth, which is often at sea level or close to it, the elevation typically decreases. However, this decrease is not uniform, as the river may encounter varying landscapes, such as hills, valleys, and plateaus, leading to fluctuations in elevation along its course. These variations may include sections where the river flows over steep gradients, resulting in higher elevations, and sections that meander through flatter terrain, lowering its elevation. Additionally, local geological structures and sediment deposition can further influence the river's path and elevation. Hence, the correct response highlights the complexity and dynamic nature of river systems, where multiple factors contribute to the changes in elevation along their longitudinal profiles.

4. What distinguishes a thrust fault from a standard reverse fault?

- A. It has a steeper angle of dip**
- B. It has a dip of less than 30 degrees**
- C. It involves lateral movement only**
- D. It is the most common type of fault**

A thrust fault is characterized by a low-angle dip, typically less than 30 degrees. This is a key distinguishing feature that differentiates it from a standard reverse fault, which often has a steeper dip. In a thrust fault, the hanging wall moves up over the footwall, but because of the gentle incline, it often results in the horizontal movement of rock layers over long distances. This contrasts with the more vertical nature of reverse faults. The low-angle characteristic of thrust faults allows for distinct geological formations and often plays a key role in mountain-building processes. The other choices do not correctly describe the primary attributes that distinguish thrust faults, reinforcing why the low-angle dip is the defining feature.

5. What is a horst in geological terms?

- A. Down-dropped block bounded by normal faults
- B. Uplifted block bounded by normal faults**
- C. A type of sedimentary structure
- D. Fault zone with significant lateral movement

A horst is defined as an uplifted block of the Earth's crust that is bordered by normal faults. The critical aspect of a horst is its relationship to these faults; it arises when the land between two normal faults drops down, effectively pushing the horst upward in comparison to the surrounding terrain. This uplifting process results in a structure that typically stands out in the landscape, often characterized by steep sides and a relatively flat top. Understanding the geological significance of a horst involves recognizing its role in the broader context of tectonic processes. It can influence local geology, hydrology, and even ecosystems due to its elevation and the elevation gradient it creates in the surrounding area. In contrast, a down-dropped block, known as a graben, occurs when the land between two normal faults sinks rather than rises. The options referring to sedimentary structures or lateral movement in fault zones do not accurately capture the definition of a horst, further reinforcing the distinction between these geological terms.

6. Which of the following is NOT a cause of earthquakes?

- A. Meteorite impact
- B. Moving magma
- C. Deep sea drilling**
- D. Landslides

Deep sea drilling is not a cause of earthquakes. While drilling can have localized effects on the seafloor and surrounding geology, it does not induce the tectonic processes that typically result in earthquakes. Earthquakes are primarily caused by the movement of tectonic plates, which can be influenced by factors like meteorite impacts, moving magma from volcanic activity, and even landslides that can generate seismic waves under certain conditions. Meteorite impacts can lead to earthquakes due to the sudden release of energy upon impact, creating shockwaves. Moving magma can cause earthquakes as it forces its way through the Earth's crust, creating pressure that can lead to fractures and seismic activity. Landslides can also generate earthquakes when large amounts of material move rapidly downhill, disrupting the ground and potentially producing seismic waves. In contrast, deep sea drilling does not involve the same geological processes that lead to significant seismic events, making it the outlier among the options presented.

7. What is strain in geology?

- A. A force applied to rocks
- B. The change in shape or volume of a material**
- C. The capacity of a rock to withstand stress
- D. The pressure applied to rocks

Strain in geology refers specifically to the change in shape, size, or volume that occurs in response to an applied stress. When rocks are subjected to external forces, they undergo deformation, resulting in a change in their structure. This deformation can manifest in various forms, such as elongation, compression, or shear. Strain effectively quantifies how much a material has been altered from its original configuration due to these applied stresses. While other concepts such as force and pressure relate to the causes of deformation in rocks, they do not encapsulate the effect that results from those forces. Strain focuses on the resultant changes within the material itself, which is a critical aspect of understanding geological processes such as folding, faulting, and the overall structural behavior of the Earth's crust.

8. Which period is characterized by numerous ice ages?

- A. Neogene Period
- B. Quaternary Period**
- C. Cretaceous Period
- D. Paleogene Period

The Quaternary Period is characterized by numerous ice ages, marking significant climatic shifts and extensive glaciation events. This period, which began approximately 2.6 million years ago and continues to the present, is divided into two epochs: the Pleistocene and the Holocene. During the Pleistocene epoch, repeated glaciations occurred, with large ice sheets covering substantial parts of North America, Europe, and Asia. These glacial and interglacial cycles had profound effects on the Earth's climate, sea levels, and the biogeography of species. The Quaternary is notable for the development of modern humans and the extinction of many large mammals, which were linked to the environmental changes brought about by these ice ages. In contrast, the other periods listed do not have the same emphasis on ice ages. The Neogene Period primarily features the evolution of mammals and plants, the Cretaceous Period is known for the dominance of dinosaurs and the development of flowering plants, while the Paleogene Period also focused on the recovery and diversification of life following the extinction event at the end of the Cretaceous. Thus, the defining characteristic of ice ages is uniquely associated with the Quaternary Period.

9. Which type of stress is associated with reverse faults?

- A. Tensional stress
- B. Compressional stress**
- C. Shear stress
- D. Elastic stress

Reverse faults are primarily associated with compressional stress. This type of stress occurs when two rock masses are pushed together, resulting in a shortening of the crust. When compressional stress acts on rocks, it can lead to the formation of reverse faults, where one block of rock is thrust over another. This is a key mechanism in mountain-building processes as the layers of rock are pushed upward and folded in response to the intense pressures they encounter. In contrast, tensional stress is related to normal faults, where the crust is being pulled apart. Shear stress involves lateral movement of rock layers against each other but does not contribute to the formation of reverse faults. Elastic stress, while important in the overall behavior of rocks, does not specifically define the conditions that lead to the formation of faults of any type, including reverse faults. Thus, compressional stress is the driving force behind the characteristics and behavior of reverse faults.

10. What are the primary factors that affect slope stability?

- A. Type of rock and temperature
- B. Water and particle cohesion**
- C. Age of rock and seismic activity
- D. Friction and vegetation

The primary factors affecting slope stability include water and particle cohesion. Water plays a crucial role in slope stability because it can add weight to the materials on a slope, reduce friction between particles, and increase pore water pressure, which may lead to a reduction in effective stress and thus promote failure. When water saturates soil or rock materials, it can lead to increased instability, particularly during heavy rainfall or rapid snowmelt. Particle cohesion refers to the attractive forces between particles, which can help to keep them bound together. High cohesion increases slope stability, as it resists the forces that push materials downward. Materials with low cohesion are more prone to sliding and erosion, especially when saturated with water. Together, these two factors—water and particle cohesion—significantly influence the overall stability of a slope by ensuring that the forces acting on the slope are balanced in a manner that prevents failure.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://iowastategeology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE