

Intravenous and Vascular Access Therapy Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What type of central line is typically inserted into the subclavian vein?**
 - A. Peripherally inserted central catheter (PICC)**
 - B. Subclavian central venous catheter**
 - C. Internal jugular central line**
 - D. Femoral central line**

- 2. How often should the IV site be rotated to minimize complications?**
 - A. Every 24 to 48 hours**
 - B. Every 72 to 96 hours**
 - C. Every week**
 - D. Every 12 hours**

- 3. What is the primary purpose of intravenous (IV) therapy?**
 - A. To deliver fluids, medications, and nutrients directly into the bloodstream**
 - B. To provide blood transfusions only**
 - C. To sterilize the blood before returning it to the body**
 - D. To monitor blood pressure continuously**

- 4. Which type of IV access device is most appropriate for a patient requiring frequent blood draws and medication administration?**
 - A. Peripheral IV catheter**
 - B. Centrally inserted catheter**
 - C. Subcutaneous implanted port**
 - D. Saline lock**

- 5. When starting an IV on a 92-year-old patient, what actions might need to be taken?**
 - A. Avoid using the dominant arm and hand veins**
 - B. Use a larger gauge needle**
 - C. Start the IV in the forearm**
 - D. Ensure a tourniquet is used**

6. What electrolyte imbalance should be monitored closely during IV fluid administration?

- A. Hyponatremia**
- B. Hypokalemia**
- C. Hyperkalemia associated with rapid potassium infusion**
- D. Hypercalcemia**

7. Define the term "flush" in relation to IV therapy.

- A. Administering a medication**
- B. Instilling a small amount of solution to keep the catheter patent**
- C. Draining the IV line**
- D. Changing the IV dressing**

8. How can nurses prevent catheter-related bloodstream infections (CRBSIs)?

- A. By changing the catheter every week**
- B. By following strict aseptic technique during insertion and care**
- C. By using only sealed equipment**
- D. By applying an antibiotic ointment**

9. When assessing an IV site, what does redness and warmth indicate?

- A. Infection**
- B. Phlebitis**
- C. Extravasation**
- D. Scar tissue formation**

10. What is a potential complication that a nurse should monitor for in a patient with an IV line?

- A. Dehydration**
- B. Fluid overload**
- C. Increased appetite**
- D. Weight loss**

Answers

SAMPLE

1. B
2. B
3. A
4. B
5. A
6. C
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What type of central line is typically inserted into the subclavian vein?

- A. Peripherally inserted central catheter (PICC)**
- B. Subclavian central venous catheter**
- C. Internal jugular central line**
- D. Femoral central line**

The subclavian central venous catheter is indeed the type of central line that is typically inserted into the subclavian vein. This type of catheter is designed to provide long-term intravenous access and is commonly used for administering medications, fluids, and for drawing blood. Inserting the catheter into the subclavian vein takes advantage of its size and accessibility, which can facilitate the delivery of larger volumes of fluid or medications and can be a preferred site for various clinical situations. In contrast, other types of central lines serve different purposes and are inserted through other veins. For example, a peripherally inserted central catheter (PICC) is accessed through a vein in the arm and is used when prolonged access is needed but the subclavian vein may not be the best option due to patient-specific factors or preferences. The internal jugular central line is another alternative but involves inserting the line into the internal jugular vein in the neck, which may not be appropriate for all patients, especially if there are concerns about neck injuries or infections. Lastly, a femoral central line is inserted into the femoral vein, typically as a last resort due to its proximity to other critical structures and the higher risk of infection. This understanding of the various types of central lines

2. How often should the IV site be rotated to minimize complications?

- A. Every 24 to 48 hours**
- B. Every 72 to 96 hours**
- C. Every week**
- D. Every 12 hours**

The best practice for maintaining intravenous (IV) access includes rotating the IV site to minimize complications such as phlebitis, infiltration, and infection. Rotating the IV site every 72 to 96 hours balances the need for minimizing these risks while allowing sufficient time for the IV line to serve its function. This timeframe is based on guidelines that consider the duration IV catheters can remain in place without a significant increase in complications. Keeping the catheter in the same location for too long can lead to local tissue irritation and other issues, while too frequent rotation may not allow for sufficient healing of the previous access site. Therefore, a rotation period of every 72 to 96 hours is such that it remains effective in preventing complications and promoting patient safety.

3. What is the primary purpose of intravenous (IV) therapy?

- A. To deliver fluids, medications, and nutrients directly into the bloodstream**
- B. To provide blood transfusions only**
- C. To sterilize the blood before returning it to the body**
- D. To monitor blood pressure continuously**

The primary purpose of intravenous (IV) therapy is to deliver fluids, medications, and nutrients directly into the bloodstream. This method ensures rapid absorption and immediate availability of these substances to the body's tissues and organs. Because IV therapy bypasses the gastrointestinal tract, it is particularly useful for patients who are unable to take medications orally due to factors like nausea, vomiting, or difficulties swallowing. Additionally, IV therapy allows for precise control over fluid and electrolyte balance, which is critical in various medical conditions requiring prompt treatment. It can also be used to administer various forms of therapies, including nutrition in the form of parenteral nutrition, which provides essential nutrients to patients who cannot consume food normally. Therefore, option A encompasses the comprehensive utility of IV therapy in clinical settings, emphasizing its vital role in patient care.

4. Which type of IV access device is most appropriate for a patient requiring frequent blood draws and medication administration?

- A. Peripheral IV catheter**
- B. Centrally inserted catheter**
- C. Subcutaneous implanted port**
- D. Saline lock**

The most appropriate choice for a patient requiring frequent blood draws and medication administration is a centrally inserted catheter. This device is designed for long-term use and can remain in place for weeks or even months, making it ideal for patients who need repeated access to their vascular system. Centrally inserted catheters, such as a PICC line or a tunneled catheter, allow healthcare providers to easily administer medications, fluids, and draw blood samples without the need for repeated venipuncture, which can be uncomfortable and lead to vein damage over time. These catheters are generally placed in larger veins, which can accommodate higher volumes and more viscous solutions, if needed. In contrast, while a peripheral IV catheter can be used for medication and blood draws, it typically has a shorter dwell time and may become unusable with frequent access attempts, necessitating multiple needle sticks. A saline lock acts as a "one-time" IV access but is not suitable for the frequency of medication administration or blood draws needed in this scenario. Similarly, while a subcutaneous implanted port is an option for long-term access, it is less commonly used for frequent blood draws compared to centrally inserted catheters due to the need for a specialized access device and technique.

5. When starting an IV on a 92-year-old patient, what actions might need to be taken?

- A. Avoid using the dominant arm and hand veins**
- B. Use a larger gauge needle**
- C. Start the IV in the forearm**
- D. Ensure a tourniquet is used**

In establishing intravenous access for a 92-year-old patient, considering the use of the dominant arm and hand veins is significant because these areas may not be ideal for IV insertion. The dominant arm might have veins that are more difficult to cannulate due to increased muscle use over time, leading to possible atrophy or reduced vein visibility. Additionally, using the hand veins can be more uncomfortable for older adults due to thinner skin and a higher likelihood of vein fragility. When starting an IV, healthcare providers often prioritize more accessible and stable venous sites, which may not be located in the dominant arm or hand. Therefore, avoiding these sites in elderly patients can minimize discomfort and reduce the risk of complications, ensuring a smoother procedure and better patient care. In contrast, other options can involve different practical considerations. For instance, using a larger gauge needle may not always be appropriate for elderly patients, who often have smaller veins. Additionally, starting the IV in the forearm, while sometimes a better location, may not be the only strategy. The use of a tourniquet, while standard, can be adjusted based on the patient's comfort level and vein condition. Emphasizing gentle techniques tailored to the patient's anatomy and health condition is imperative in this age group

6. What electrolyte imbalance should be monitored closely during IV fluid administration?

- A. Hyponatremia**
- B. Hypokalemia**
- C. Hyperkalemia associated with rapid potassium infusion**
- D. Hypercalcemia**

Monitoring for electrolyte imbalances during IV fluid administration is crucial for patient safety, especially when infusing fluids that contain electrolytes. Hyperkalemia, particularly when associated with rapid potassium infusion, is a significant concern because excessive potassium levels can lead to serious cardiac complications, such as arrhythmias or even cardiac arrest. In cases where potassium is infused rapidly, the body may not have enough time to manage the increased levels adequately. This is particularly critical for patients with existing renal impairment or those taking medications that affect potassium levels, as these factors may exacerbate the risk of hyperkalemia. Understanding the specific context in which potassium is administered helps prevent these dangerous complications. In contrast, while conditions like hyponatremia, hypokalemia, and hypercalcemia are also important to monitor, they do not pose as immediate a threat during or shortly after IV fluid administration involving potassium as hyperkalemia does. Therefore, the focus on monitoring for hyperkalemia during rapid potassium infusion is essential for ensuring patient safety and preventing severe adverse effects.

7. Define the term "flush" in relation to IV therapy.

- A. Administering a medication
- B. Instilling a small amount of solution to keep the catheter patent**
- C. Draining the IV line
- D. Changing the IV dressing

The term "flush" in relation to IV therapy refers specifically to instilling a small amount of solution—commonly saline or a compatible fluid—through an intravenous catheter. This practice is essential for several reasons. Mainly, it helps maintain patency of the catheter by clearing any potential blockages that could arise from blood or medication deposits within the line. Additionally, flushing ensures that the medication administered via the IV is fully delivered into the bloodstream and minimizes the risk of complications such as phlebitis or infection. The other options do not accurately represent the concept of flushing. Administering a medication involves delivering therapeutics rather than ensuring the catheter remains clear. Draining the IV line suggests removing fluid, which does not align with the purpose of flushing. Changing the IV dressing pertains to maintaining the site's integrity and cleanliness, which, while important, is a different aspect of IV care. Thus, the definition provided accurately captures the role and importance of flushing in intravenous therapy.

8. How can nurses prevent catheter-related bloodstream infections (CRBSIs)?

- A. By changing the catheter every week
- B. By following strict aseptic technique during insertion and care**
- C. By using only sealed equipment
- D. By applying an antibiotic ointment

The prevention of catheter-related bloodstream infections (CRBSIs) is a critical aspect of patient safety and care in the healthcare setting. Following strict aseptic technique during the insertion and maintenance of intravenous catheters significantly reduces the risk of introducing pathogens into the bloodstream. Aseptic technique involves a set of practices designed to prevent contamination and includes hand hygiene, the use of sterile gloves and equipment, proper site preparation, and maintaining a sterile field throughout the procedure. When nurses adhere to strict aseptic practices, they minimize the potential for bacteria to enter the bloodstream during catheter placement and care. This is essential because the IV catheter acts as a direct pathway for bacteria, and any lapse in sterile technique can lead to serious infections. While changing the catheter regularly might seem beneficial, it's not always necessary or effective in preventing CRBSIs if done without strict aseptic technique. Using sealed equipment is important but does not address all aspects of aseptic technique. Applying an antibiotic ointment may help in certain cases, but it is not a recommended routine practice for CRBSI prevention. Understanding how to properly handle and care for intravenous lines reinforces the importance of aseptic techniques in healthcare, ensuring better patient outcomes.

9. When assessing an IV site, what does redness and warmth indicate?

- A. Infection**
- B. Phlebitis**
- C. Extravasation**
- D. Scar tissue formation**

Redness and warmth at an IV site are commonly associated with phlebitis, which is inflammation of the vein. This condition often occurs as a reaction to the catheter or the infusate, leading to localized symptoms such as redness (erythema), warmth, swelling, and sometimes pain. These signs are indicative of the body's inflammatory response to irritation or trauma in the vein, which can be triggered by factors such as the type of catheter used, the duration of IV therapy, or the nature of the fluid being infused. Recognizing these symptoms is vital for timely intervention, as untreated phlebitis may progress to more severe conditions, including thrombophlebitis or systemic infections. It's important to assess the IV site regularly and to take appropriate action if phlebitis is suspected, such as discontinuing the IV and applying warm compresses to the area.

10. What is a potential complication that a nurse should monitor for in a patient with an IV line?

- A. Dehydration**
- B. Fluid overload**
- C. Increased appetite**
- D. Weight loss**

Fluid overload is a significant potential complication associated with intravenous (IV) therapy, particularly in patients receiving large volumes of fluids or those who are vulnerable due to underlying health conditions, such as heart or kidney disease. When a patient's body receives more fluid than it can handle, it can lead to elevated blood pressure, pulmonary edema, and heart failure, among other serious issues. Monitoring for signs of fluid overload is essential for nurses to ensure patient safety. Symptoms may include shortness of breath, increased respiratory rate, swelling in the extremities, and abnormal findings on auscultation of lung sounds (such as crackles). Therefore, vigilantly watching for these indications allows for timely intervention, such as adjusting IV fluid rates or notifying the healthcare provider to reassess the treatment plan. In contrast, while dehydration, increased appetite, and weight loss can be relevant clinical observations in various patient contexts, they are not direct complications related to the presence of an IV line. Dehydration typically occurs due to inadequate fluid intake or excessive fluid loss, while increased appetite can signify recovery or metabolic changes and is generally not a concern associated with IV therapy. Weight loss may result from multiple factors, including underlying health conditions or malnutrition, rather than being a consequence of IV therapy itself.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://intravenousvascularaccesstherapy.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE