

International Trauma Life Support (ITLS) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What does 'Exsanguination' in trauma care refer to?**
 - A. Severe loss of blood**
 - B. Rapid heart rate**
 - C. Appendix rupture**
 - D. Sternal fracture**

- 2. Which sign is NOT typically associated with chest decompression indications?**
 - A. Skin diaphoretic**
 - B. Decreasing LOC**
 - C. Increased respiratory rate**
 - D. Tracheal deviation**

- 3. What are the signs of inadequate breathing in a trauma patient?**
 - A. Asymmetrical chest movement**
 - B. Cyanosis, use of accessory muscles, decreased respiratory rate**
 - C. Rapid heart rate, loud wheezing, confusion**
 - D. Pale skin, high blood pressure, fatigue**

- 4. What immobilization technique should be used for suspected pelvic fractures?**
 - A. Use a pelvic binder or wrapping**
 - B. Secure the patient to a spinal board**
 - C. Check for spinal injuries first**
 - D. Elevate the legs for better blood flow**

- 5. What is evaluated in the 'Disability' portion of the trauma assessment?**
 - A. Pupil response**
 - B. Level of consciousness using the AVPU scale**
 - C. Motor response**
 - D. Reflexes**

6. Which airway intervention is essential for intubation alignment?

- A. Sellick maneuver**
- B. ELM technique**
- C. Jaw thrust maneuver**
- D. Cricothyrotomy**

7. What is the highest possible score on the Glasgow Coma Scale (GCS)?

- A. 12**
- B. 13**
- C. 14**
- D. 15**

8. What assessment tool is commonly used to measure shock severity?

- A. The Glasgow Coma Scale**
- B. The Trauma Index**
- C. The Shock Index (heart rate/systolic blood pressure)**
- D. The Injury Severity Score**

9. What should be the first priority when managing a patient with severe trauma?

- A. Control any life-threatening hemorrhage**
- B. Administer fluids**
- C. Perform a complete neurological exam**
- D. Transport to a hospital**

10. Which fluid is typically used in an IV drip during trauma resuscitation?

- A. Sterile water only**
- B. Normal saline or lactated Ringer's solution**
- C. Carbonated beverages**
- D. Only blood products**

Answers

SAMPLE

1. A
2. C
3. B
4. A
5. B
6. B
7. D
8. C
9. A
10. B

SAMPLE

Explanations

SAMPLE

1. What does 'Exsanguination' in trauma care refer to?

- A. Severe loss of blood**
- B. Rapid heart rate**
- C. Appendix rupture**
- D. Sternal fracture**

Exsanguination in trauma care refers specifically to a severe loss of blood, which can occur from various traumatic injuries such as lacerations, fractures, or penetrating injuries. This condition is critical because significant blood loss can lead to hypovolemic shock, a life-threatening state where the body does not have enough blood to maintain adequate circulation and oxygen delivery to vital organs. Immediate recognition and treatment of exsanguination are essential in trauma care to prevent mortality and manage the patient's condition effectively. The other options pertain to different medical issues that are not directly related to exsanguination. Rapid heart rate is a response that may occur due to significant blood loss but does not define exsanguination. An appendix rupture is a specific medical condition that might lead to internal bleeding but is not synonymous with exsanguination. Similarly, a sternal fracture can cause internal injury but is not directly tied to the definition of severe blood loss. Therefore, the focus on exsanguination correctly identifies the critical issue of blood loss in trauma care.

2. Which sign is NOT typically associated with chest decompression indications?

- A. Skin diaphoretic**
- B. Decreasing LOC**
- C. Increased respiratory rate**
- D. Tracheal deviation**

In the context of chest decompression indications, the signs that are commonly associated with conditions such as tension pneumothorax include skin diaphoresis, decreasing level of consciousness (LOC), and tracheal deviation. Each of these signs indicates the severity of the situation where air is trapped in the pleural space, creating pressure that can compromise cardiovascular and respiratory function. An increased respiratory rate, while potentially indicative of distress or pain, is not a specific sign associated with the need for chest decompression. Instead, patients with tension pneumothorax may exhibit rapid, shallow breathing or altered respiratory patterns as they struggle for air, but an increased respiratory rate alone does not indicate the critical need for immediate decompression. It could suggest other issues or stress responses but does not specifically point to the presence of tension in the thoracic cavity that would necessitate a chest decompression procedure. Thus, understanding the indications for chest decompression is crucial for recognizing the specific signs. The correct choice reflects this understanding of what constitutes a direct prompt for such an intervention.

3. What are the signs of inadequate breathing in a trauma patient?

- A. Asymmetrical chest movement**
- B. Cyanosis, use of accessory muscles, decreased respiratory rate**
- C. Rapid heart rate, loud wheezing, confusion**
- D. Pale skin, high blood pressure, fatigue**

Inadequate breathing in a trauma patient can be effectively identified by specific signs that indicate the body is not receiving enough oxygen or is unable to ventilate effectively. Cyanosis, which refers to a bluish discoloration of the skin, particularly around the lips and extremities, is a clear indicator of low oxygen levels in the blood. This is a critical sign that demands urgent attention. The use of accessory muscles for breathing demonstrates that the patient is struggling to breathe adequately. Normally, breathing is accomplished by the diaphragm and intercostal muscles, but when adequate ventilation is compromised, the body recruits additional muscles, such as those in the neck and abdomen, to assist with breathing. This indicates increased respiratory effort and can signal respiratory distress. A decreased respiratory rate can also suggest inadequate breathing. While a rapid respiratory rate might seem like an indication of adequate ventilation, in trauma patients, a decrease may reflect significant distress or fatigue in the respiratory muscles, leading to an inability to sustain proper breathing patterns. These signs combined—cyanosis, the use of accessory muscles, and a decreased respiratory rate—provide a comprehensive picture of inadequate breathing in the trauma setting, necessitating immediate assessment and intervention.

4. What immobilization technique should be used for suspected pelvic fractures?

- A. Use a pelvic binder or wrapping**
- B. Secure the patient to a spinal board**
- C. Check for spinal injuries first**
- D. Elevate the legs for better blood flow**

Using a pelvic binder or wrapping is the correct immobilization technique for suspected pelvic fractures. This method is essential because it helps to stabilize the pelvis, which can significantly reduce the risk of further injury and decrease the potential for life-threatening hemorrhage from pelvic fractures. Pelvic binders are designed to compress the pelvis, which can help control bleeding by narrowing the fracture site and minimizing the volume of the pelvic cavity where blood could accumulate. This technique is particularly crucial in trauma situations where pelvic fractures are associated with significant vascular injuries. Other options, while relevant in different contexts, do not specifically address the immediate needs of managing a suspected pelvic fracture. For example, securing the patient to a spinal board is more appropriate for spinal injuries and is less effective at addressing the specific complications associated with pelvic fractures. Checking for spinal injuries first, although prudent in overall trauma assessments, does not provide the targeted management required for a pelvic fracture. Lastly, elevating the legs may seem beneficial for circulation; however, this could worsen bleeding in the case of pelvic injuries and is not a recommended practice in managing such fractures.

5. What is evaluated in the 'Disability' portion of the trauma assessment?

- A. Pupil response**
- B. Level of consciousness using the AVPU scale**
- C. Motor response**
- D. Reflexes**

In the 'Disability' portion of the trauma assessment, the focus is on the patient's level of consciousness, which is primarily evaluated using the AVPU scale. This scale provides a quick method for assessing a patient's responsiveness and neurological status, categorizing their level of consciousness into four classifications: Alert, responds to Voice, responds to Pain, and Unresponsive. Assessing the level of consciousness is critical in trauma management as it helps to identify any potential brain injury or altered mental status, which can indicate underlying neurological problems. If the level of consciousness is impaired, it prompts further investigation and appropriate interventions. While pupil response, motor response, and reflexes are indeed important components of a comprehensive neurological exam, they are not the primary focus during the 'Disability' segment of the trauma assessment. Instead, the use of the AVPU scale provides a straightforward and effective way to quickly ascertain how the patient is handling their vital neurological functions.

6. Which airway intervention is essential for intubation alignment?

- A. Selick maneuver**
- B. ELM technique**
- C. Jaw thrust maneuver**
- D. Cricothyrotomy**

The ELM technique, or External Laryngeal Manipulation, is essential for intubation alignment because it aids in optimizing the position of the trachea for easier access during intubation. By applying this technique, the rescuer can manipulate the larynx externally to align the airway in a more advantageous position, facilitating the passage of the endotracheal tube into the trachea. Proper alignment is critical for successful intubation, especially in cases where the anatomy may be distorted due to trauma or other factors. The other interventions are important in their own right but serve different purposes. The Selick maneuver is primarily used to prevent aspiration by applying pressure to the cricoid cartilage, which may not directly contribute to the alignment of the airway. The jaw thrust maneuver is a technique for opening the airway by displacing the jaw forward; it is particularly beneficial in cases of suspected spinal injuries, but it does not specifically aid in alignment for intubation. Cricothyrotomy is an emergency procedure for establishing an airway in cases where intubation is not possible, but it is not associated with the alignment of the airway for intubation.

7. What is the highest possible score on the Glasgow Coma Scale (GCS)?

- A. 12
- B. 13
- C. 14
- D. 15**

The highest possible score on the Glasgow Coma Scale (GCS) is 15. This scale is used to assess a patient's level of consciousness and neurological functioning, particularly after a head injury. It evaluates three areas: eye opening, verbal response, and motor response. Each of these categories has a defined scoring system, with the highest score in each category contributing to an overall score of 15. In this context, scoring 15 indicates that the patient is fully conscious, responsive, and able to open their eyes spontaneously, speak coherently, and move in response to commands. Understanding the GCS is crucial for healthcare providers as it helps in determining the severity of a patient's condition and in making decisions regarding further medical interventions. Lower scores indicate varying degrees of impaired consciousness, but 15 represents the optimal level of awareness and responsiveness.

8. What assessment tool is commonly used to measure shock severity?

- A. The Glasgow Coma Scale
- B. The Trauma Index
- C. The Shock Index (heart rate/systolic blood pressure)**
- D. The Injury Severity Score

The Shock Index is a valuable assessment tool used to measure the severity of shock in patients. It is calculated by taking the heart rate and dividing it by the systolic blood pressure. A higher Shock Index indicates more severe shock, as it reflects the body's compensatory response to reduced perfusion and inadequate blood flow. In situations of shock, patients often exhibit changes in heart rate and blood pressure, making this index a quick and effective way to assess their hemodynamic status. This allows emergency responders and healthcare professionals to prioritize care and make informed decisions regarding further interventions. Other assessment tools mentioned, such as the Glasgow Coma Scale, are primarily used to evaluate a patient's level of consciousness and neurological status rather than hemodynamic stability. The Trauma Index and Injury Severity Score are also relevant in assessing trauma, but they do not specifically target shock severity like the Shock Index does. These tools serve different purposes in the trauma assessment framework, underscoring the importance of using the appropriate tool for the specific clinical scenario.

9. What should be the first priority when managing a patient with severe trauma?

- A. Control any life-threatening hemorrhage**
- B. Administer fluids**
- C. Perform a complete neurological exam**
- D. Transport to a hospital**

In trauma management, the first priority is to control any life-threatening hemorrhage. This is crucial because excessive bleeding can lead to hypovolemic shock, which is a life-threatening condition that occurs when the body loses a significant amount of blood volume. If not addressed immediately, severe hemorrhage can lead to organ failure and death within minutes. Thus, the immediate focus should be on stopping any bleeding and ensuring that the patient is stable before proceeding to other interventions.

Administering fluids is also important, but it typically follows the control of hemorrhage. Fluids may be necessary to support circulation once bleeding is managed, but merely giving fluids without addressing the source of bleeding may not effectively stabilize the patient. Performing a complete neurological exam is essential in evaluating the extent of trauma, but this should not take precedence over life-saving measures such as hemorrhage control. Assessments can be conducted once the patient's immediate life-threatening conditions are addressed. Transporting the patient to a hospital is a critical step in the overall management of trauma, but it occurs after ensuring that any immediate threats to the patient's life, like uncontrolled bleeding, are stabilized. Efficient transport is central to the overall care pathway but must follow the urgent control of life-threatening conditions.

10. Which fluid is typically used in an IV drip during trauma resuscitation?

- A. Sterile water only**
- B. Normal saline or lactated Ringer's solution**
- C. Carbonated beverages**
- D. Only blood products**

During trauma resuscitation, normal saline and lactated Ringer's solution are commonly used intravenous (IV) fluids because they are isotonic solutions that help expand intravascular volume effectively. These fluids are crucial in managing patients who may be experiencing hypovolemic shock due to significant blood loss, as they can quickly replenish lost fluids and restore blood pressure. Normal saline, which is a solution of salt and water, helps to maintain electrolyte balance, while lactated Ringer's solution contains sodium, potassium, calcium, and lactate, providing additional electrolytes that can be beneficial in a trauma scenario. The composition of these fluids mimics the body's extracellular fluid, making them ideal for initial resuscitation in trauma cases. In contrast, sterile water would not be appropriate as it is hypotonic and could cause hemolysis when administered intravenously, leading to serious complications. Carbonated beverages are not suitable for IV administration and could introduce carbonation and sugars that may complicate the patient's condition. While blood products are vital in certain circumstances, especially when there is significant hemorrhage, they are typically used after initial resuscitation with crystalloids like normal saline or lactated Ringer's solution. Therefore, normal saline or lactated Ringer's solution

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://intltraumalifesupport.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE