

Integrated Science and Technology (ISAT) Exam 3 Practice (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is an ecological area characterized by specific climate conditions, flora, and fauna called?**
 - A. An ecosystem.**
 - B. A habitat.**
 - C. A biome.**
 - D. A community.**

- 2. What is the method for calculating the volume of air inhaled in one hour, given the volume of each breath and the breathing rate?**
 - A. Multiply the volume of a breath by the number of breaths per day**
 - B. Multiply the volume of a breath by the number of breaths per minute**
 - C. Multiply the volume of a breath by the number of breaths per hour**
 - D. Multiply the volume of a breath by the number of breaths per second**

- 3. What is a primary function of the immune system?**
 - A. To regulate hormone levels**
 - B. To protect the body from infections**
 - C. To facilitate digestion**
 - D. To assist in physical movement**

- 4. Which technology primarily helps in reducing emissions from automobiles?**
 - A. Leaded gasoline**
 - B. Electric vehicles**
 - C. Catalytic converters**
 - D. None of the above**

- 5. Which gas is primarily responsible for the greenhouse effect?**
 - A. Nitrogen**
 - B. Oxygen**
 - C. Carbon dioxide**
 - D. Soil gas**

6. Which substance is considered a primary component of uncontaminated air?

- A. SO₂**
- B. N₂**
- C. O₃**
- D. NO₂**

7. What role does chlorophyll play in photosynthesis?

- A. It absorbs oxygen from the air**
- B. It converts chemical energy into sunlight**
- C. It absorbs sunlight for energy conversion**
- D. It stores energy in the plant's roots**

8. Which gas contributes to the formation of brown smog?

- A. Carbon Dioxide**
- B. Nitrogen Dioxide**
- C. Sulfur Dioxide**
- D. Ozone**

9. What is entropy a measure of in a system?

- A. The total energy content of a system**
- B. The order or organization within a system**
- C. The disorder or randomness within a system**
- D. The temperature changes in a system**

10. Define renewable energy.

- A. Energy that cannot be replenished**
- B. Energy derived from fossil fuels**
- C. Energy that comes from sources that are naturally replenished**
- D. Energy that is only available during certain seasons**

Answers

SAMPLE

1. C
2. C
3. B
4. C
5. C
6. B
7. C
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. What is an ecological area characterized by specific climate conditions, flora, and fauna called?

- A. An ecosystem.**
- B. A habitat.**
- C. A biome.**
- D. A community.**

A biome is defined as a large ecological area characterized by specific climate conditions, which includes temperature, precipitation patterns, and the organisms that inhabit these regions. Each biome consists of distinct flora (plant life) and fauna (animal life), which have adapted to thrive in their particular environment. For example, a tropical rainforest biome is known for its warm temperatures, high rainfall, and diverse species, while a desert biome is characterized by its dry conditions and specialized plants and animals suited to survive with little water. Understanding biomes is fundamental in studying ecological relationships and biodiversity on a global scale. Other terms such as ecosystem, habitat, and community refer to different aspects of ecological organization. An ecosystem encompasses a community of organisms and their physical environment, a habitat refers to the specific environment in which a particular species lives, and a community is defined as the interacting species living together in a specific area. Each term highlights unique ecological concepts, but "biome" specifically captures the broader climatic and biological characteristics of large regions across the planet.

2. What is the method for calculating the volume of air inhaled in one hour, given the volume of each breath and the breathing rate?

- A. Multiply the volume of a breath by the number of breaths per day**
- B. Multiply the volume of a breath by the number of breaths per minute**
- C. Multiply the volume of a breath by the number of breaths per hour**
- D. Multiply the volume of a breath by the number of breaths per second**

To calculate the volume of air inhaled in one hour, you need to determine how many breaths are taken in that timeframe and the volume of each individual breath. The correct approach involves multiplying the volume of a breath by the number of breaths taken within one hour. Since there are 60 minutes in an hour and the breathing rates are typically expressed in breaths per minute, it becomes clear that the most accurate method is to multiply the volume of a breath by the number of breaths per hour. This provides the overall volume inhaled during that hour. Other methods such as multiplying by the number of breaths per day or per minute may lead to incorrect results, as they do not reflect the specific one-hour period being analyzed. Additionally, calculating based on breaths per second would not be suitable since it would require adjusting the result into an hourly volume without directly stating the number of breaths taken specifically in that hour. Thus, the correct approach focuses solely on calculating the volume for that specific hourly timeframe.

3. What is a primary function of the immune system?

- A. To regulate hormone levels
- B. To protect the body from infections**
- C. To facilitate digestion
- D. To assist in physical movement

The primary function of the immune system is to protect the body from infections. This system comprises a network of cells, tissues, and organs that work together to defend against pathogens such as bacteria, viruses, fungi, and parasites. When these harmful invaders are detected, the immune system responds by activating various immune cells that target and neutralize the threats. This includes the production of antibodies, the activation of white blood cells, and the mobilization of other components to eliminate the pathogens, thereby maintaining the body's health and ensuring survival. In contrast, regulating hormone levels, facilitating digestion, and assisting in physical movement pertain to other physiological systems. Hormones are primarily regulated by the endocrine system, digestion is managed by the digestive system, and physical movement is primarily governed by the muscular and skeletal systems. Each of these systems has its dedicated roles, distinctly separate from the immune system's primary function of defense against disease.

4. Which technology primarily helps in reducing emissions from automobiles?

- A. Leaded gasoline
- B. Electric vehicles
- C. Catalytic converters**
- D. None of the above

The use of catalytic converters plays a crucial role in reducing harmful emissions from automobiles. These devices are installed in the exhaust system of vehicles, where they facilitate chemical reactions that convert toxic pollutants into less harmful substances before they are released into the atmosphere. Specifically, catalytic converters help to convert carbon monoxide, nitrogen oxides, and unburned hydrocarbons—products of incomplete combustion—into carbon dioxide, nitrogen, and water vapor, which are less detrimental to the environment. For example, when gasoline is burned in an internal combustion engine, it produces a variety of harmful emissions. The catalytic converter captures these emissions and triggers a reaction using precious metals like platinum, palladium, and rhodium as catalysts. As a result, vehicles equipped with catalytic converters can significantly reduce the amount of harmful substances released, thus playing a pivotal role in improving air quality and adhering to environmental regulations. In contrast, leaded gasoline has been phased out due to its toxic effects on health and the environment, and electric vehicles, while they do not produce tailpipe emissions, rely on a broader infrastructure and technology for complete emission reduction. Therefore, catalytic converters remain key for conventional automobile technologies in managing and mitigating harmful emissions effectively.

5. Which gas is primarily responsible for the greenhouse effect?

- A. Nitrogen**
- B. Oxygen**
- C. Carbon dioxide**
- D. Soil gas**

Carbon dioxide is the primary gas responsible for the greenhouse effect due to its capacity to absorb and emit infrared radiation. This characteristic is crucial in trapping heat in the Earth's atmosphere, which helps regulate the planet's temperature. When sunlight reaches the Earth, some of this energy is reflected back into space while the rest is absorbed and re-radiated as heat. Carbon dioxide, along with other greenhouse gases, prevents some of this heat from escaping, thus maintaining a temperature that supports life. The significance of carbon dioxide is amplified by its concentration in the atmosphere, which has been increasing due to human activities such as burning fossil fuels and deforestation. This rise enhances the greenhouse effect, contributing to global warming and climate change. In contrast, gases like nitrogen and oxygen, while abundant in the atmosphere, do not significantly contribute to the greenhouse effect because they lack the ability to absorb infrared radiation effectively. Soil gas, which often contains a mixture of gases, is also not a primary contributor to the greenhouse effect when compared to the impact of atmospheric carbon dioxide. Understanding the role of these gases is crucial for grasping the complexities of climate dynamics and the importance of reducing carbon emissions to mitigate climate change effects.

6. Which substance is considered a primary component of uncontaminated air?

- A. SO₂**
- B. N₂**
- C. O₃**
- D. NO₂**

The primary component of uncontaminated air is nitrogen gas, represented by N₂. In Earth's atmosphere, nitrogen makes up about 78% of the total volume, serving as a major but inert component that does not contribute to air pollution under normal conditions. Uncontaminated air is characterized by the absence of significant levels of pollutants, including sulfur dioxide (SO₂), ozone (O₃), and nitrogen dioxide (NO₂), which are typically produced by human activities and can lead to air quality issues. Nitrogen gas is not reactive under standard atmospheric conditions and plays a vital role in maintaining the overall composition of air without contributing to harmful effects. Hence, given its abundance and non-pollutive nature, nitrogen is the correct choice when identifying the primary component of clean air.

7. What role does chlorophyll play in photosynthesis?

- A. It absorbs oxygen from the air**
- B. It converts chemical energy into sunlight**
- C. It absorbs sunlight for energy conversion**
- D. It stores energy in the plant's roots**

Chlorophyll plays a crucial role in photosynthesis primarily by absorbing sunlight for energy conversion. This pigment, found in the chloroplasts of plant cells, is essential for capturing light energy, predominantly in the blue and red wavelengths, while reflecting green light, which is why plants appear green. During photosynthesis, the energy absorbed by chlorophyll is utilized to convert carbon dioxide and water into glucose and oxygen through a series of chemical reactions. This process enables plants to harness solar energy, which serves as a fundamental source of energy for nearly all life on Earth. The glucose produced is then used by the plant for growth, reproduction, and as a source of energy for cellular processes. Other choices focus on different aspects that do not accurately reflect the role of chlorophyll. For instance, it does not absorb oxygen from the air, nor does it convert chemical energy into sunlight or store energy in the roots. Instead, chlorophyll's primary function is the initial capture and conversion of light energy necessary for the photosynthetic process.

8. Which gas contributes to the formation of brown smog?

- A. Carbon Dioxide**
- B. Nitrogen Dioxide**
- C. Sulfur Dioxide**
- D. Ozone**

Brown smog, often associated with urban environments, is primarily formed through the presence of nitrogen dioxide. This gas is produced from vehicle emissions and industrial processes. When sunlight interacts with nitrogen oxides (which include nitrogen dioxide) and volatile organic compounds (VOCs) in the atmosphere, a series of photochemical reactions occur. These reactions lead to the production of ground-level ozone and other secondary pollutants, which can contribute to the brownish appearance of the smog. In contrast, carbon dioxide does not directly participate in the photochemical reactions that lead to brown smog; it is a greenhouse gas primarily linked to climate change rather than air pollution. Sulfur dioxide, while a significant pollutant that can lead to acid rain and respiratory problems, is more associated with gray smog rather than the brown type created from the photochemical activity involving nitrogen dioxide. Ozone, while a component of smog, is typically formed as a secondary pollutant resulting from reactions involving precursors like nitrogen dioxide, but it is not a precursor itself for brown smog. Thus, the role of nitrogen dioxide as a precursor and direct contributor to the photochemical processes that create brown smog makes it the correct answer in this context.

9. What is entropy a measure of in a system?

- A. The total energy content of a system
- B. The order or organization within a system
- C. The disorder or randomness within a system**
- D. The temperature changes in a system

Entropy is fundamentally understood as a measure of disorder or randomness within a system. In the context of thermodynamics and statistical mechanics, entropy quantifies the number of possible microscopic configurations that correspond to a thermodynamic system's macroscopic state. A system with high entropy is characterized by a greater degree of disorder and a larger number of possible arrangements of particles, while a system with low entropy is more ordered and has fewer configurations available. For example, consider a gas in a container; as it expands, the molecules spread out and can occupy many more positions and velocities, thus increasing the system's entropy. Conversely, if the gas is compressed into a smaller volume, there are fewer possible positions for the gas molecules, and the entropy decreases. This concept is crucial because it plays a significant role in predicting the direction of spontaneous processes and the efficiency of energy transformations. Understanding entropy helps explain why systems tend to evolve towards greater disorder, adhering to the second law of thermodynamics, which states that the total entropy of an isolated system can never decrease over time. The other options either define concepts unrelated to entropy or misinterpret its meaning; for example, total energy content, order within a system, and temperature changes address different physical properties integral to thermodynamics but do not accurately capture

10. Define renewable energy.

- A. Energy that cannot be replenished
- B. Energy derived from fossil fuels
- C. Energy that comes from sources that are naturally replenished**
- D. Energy that is only available during certain seasons

Renewable energy is defined as energy that comes from sources that are naturally replenished. This includes energy derived from sunlight, wind, rain, tides, waves, and geothermal heat. These sources are sustainable because they are continuously renewed by natural processes and are not depleted when used. For instance, solar panels harness sunlight, which is abundant and available universally, while wind turbines convert wind energy into electricity. The importance of renewable energy lies in its potential to reduce dependence on finite fossil fuels, which can have detrimental effects on the environment and contribute to climate change. Unlike fossil fuel energy, which is limited and contributes to pollution and greenhouse gas emissions, renewable energy sources provide cleaner alternatives that can help mitigate environmental impacts and promote sustainability. In contrast, other options describe energy sources that are finite, non-renewable, or limited in availability, which does not accurately reflect the nature of renewable energy. Therefore, the definition that emphasizes the natural replenishment of energy sources captures the essence of what renewable energy represents.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://isatexam3.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE