

Instrument Ground IRA - Regulations and Procedures Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is the oxygen requirement for crew and passengers in an unpressurized aircraft at 15,000 feet?**
 - A. All occupants must use oxygen for the entire time**
 - B. Crew needs oxygen at 12,000 feet, passengers at 15,000 feet**
 - C. Crew must use oxygen above 14,000 feet, passengers above 15,000 feet**
 - D. No oxygen is required for any occupant**
- 2. Which procedure should be followed to initiate an approach after communication failure in IMC while holding?**
 - A. Proceed to the approach fix**
 - B. Follow the last clearance issued**
 - C. Depart the holding fix at the EFC time**
 - D. Return to the previous fix**
- 3. What must pilots maintain when operating in Class A airspace?**
 - A. VFR visibility and cloud clearance**
 - B. Active communication with ATC**
 - C. A higher altitude than in Class B airspace**
 - D. Flight under visual flight rules**
- 4. What is the minimum flight visibility for VFR-On-Top clearance at 10,500 feet during daylight in Class E airspace?**
 - A. 3 SM with specific cloud distances**
 - B. 5 SM with specific cloud distances**
 - C. 1 SM clear of clouds**
 - D. 1 SM below clouds**
- 5. What minimum in-flight visibility and cloud distance are required in VFR conditions above clouds at 13,500 feet MSL in Class G airspace during daylight?**
 - A. 5 miles; 1,000 feet above; 2,000 feet horizontal; 500 feet below.**
 - B. 3 miles; 1,000 feet above; 1 mile horizontal; 1,000 feet below.**
 - C. 5 miles; 1,000 feet above; 1 mile horizontal; 1,000 feet below.**
 - D. 10 miles; 1,500 feet above; 2,000 feet horizontal; 1,000 feet below.**

6. What action should you take if your No. 1 VOR receiver malfunctions while operating in controlled airspace under IFR?

- A. Continue the flight as cleared; no report is required**
- B. Report the malfunction immediately to ATC**
- C. Continue the approach and request a VOR or NDB approach**
- D. Revert to visual flight and navigate without IFR assistance**

7. Which altitude below which no aircraft may operate under IFR over mountainous terrain?

- A. 1,500 feet above the highest obstacle**
- B. 2,000 feet above the highest obstacle**
- C. 3,000 feet above the highest obstacle**
- D. 4,000 feet above the highest obstacle**

8. An abrupt change from climb to straight-and-level flight can create which illusion?

- A. Tumbling backwards.**
- B. A nose-up attitude.**
- C. A descent with the wings level.**
- D. A steep turn to the left.**

9. What is an important requirement for IFR flight planning regarding weather conditions?

- A. The pilot must file a flight plan regardless of weather.**
- B. Weather conditions must meet minimum VFR requirements.**
- C. Weather must not be less than IFR minimums.**
- D. Only good weather is needed for IFR flight.**

10. What minimum aircraft equipment is required for operation within Class C airspace?

- A. Two-way communications and Mode C transponder.**
- B. Two-way communications.**
- C. Transponder and DME.**
- D. Only a transponder.**

Answers

SAMPLE

1. C
2. C
3. B
4. B
5. C
6. B
7. B
8. A
9. C
10. A

SAMPLE

Explanations

SAMPLE

1. What is the oxygen requirement for crew and passengers in an unpressurized aircraft at 15,000 feet?

- A. All occupants must use oxygen for the entire time**
- B. Crew needs oxygen at 12,000 feet, passengers at 15,000 feet**
- C. Crew must use oxygen above 14,000 feet, passengers above 15,000 feet**
- D. No oxygen is required for any occupant**

In unpressurized aircraft, the requirement for supplemental oxygen is dictated by regulations that are in place to ensure the safety and well-being of both crew and passengers at high altitudes. At 15,000 feet, the atmospheric pressure decreases, resulting in reduced levels of oxygen available for breathing. The correct answer identifies the specific altitude requirements for oxygen use. The regulation states that flight crew members are required to use supplemental oxygen at altitudes above 14,000 feet, while passengers must begin to use oxygen at 15,000 feet. This graduated requirement is based on physiological factors, as the mixture of oxygen in the air becomes thinner as altitude increases, which can lead to hypoxia—a condition caused by insufficient oxygen. This understanding of oxygen requirements is crucial not only for compliance with safety regulations but also for ensuring that all occupants remain alert and capable of responding to in-flight situations in high-altitude operations. Thus, the correct answer emphasizes the importance of recognizing these altitude thresholds for the use of supplemental oxygen for safe operations in unpressurized aircraft.

2. Which procedure should be followed to initiate an approach after communication failure in IMC while holding?

- A. Proceed to the approach fix**
- B. Follow the last clearance issued**
- C. Depart the holding fix at the EFC time**
- D. Return to the previous fix**

In scenarios involving instrument meteorological conditions (IMC) and communication failure while holding, the procedure that should be followed is to depart the holding fix at the Expected Further Clearance (EFC) time. This approach ensures that the pilot adheres to the intended flight plan and minimizes the risk of deviations that could compromise safety. The EFC time is provided by Air Traffic Control (ATC) when a holding pattern is issued and indicates when the pilot may expect to receive further instructions or clearance. By departing at this time, the pilot maintains compliance with ATC expectations and enhances the predictability of their actions within the airspace. This practice is critical, especially in IMC, where visibility is limited, and maintaining safe separation from other aircraft is crucial. Initiating an approach after communication failure requires careful adherence to established procedures to avoid confusion or potential conflicts with other air traffic. Departing at the EFC time helps ensure that the pilot is executing the approach precisely as intended and keeps them within the structured framework that ATC relies on to manage air traffic efficiently.

3. What must pilots maintain when operating in Class A airspace?

- A. VFR visibility and cloud clearance
- B. Active communication with ATC**
- C. A higher altitude than in Class B airspace
- D. Flight under visual flight rules

When operating in Class A airspace, pilots are required to maintain active communication with Air Traffic Control (ATC). This is crucial as Class A airspace is defined from 18,000 feet MSL to Flight Level 600, where all aircraft must operate under Instrument Flight Rules (IFR). Active communication ensures that pilots receive necessary instructions from ATC, which is essential in managing the high volume of traffic and ensuring safe separation between aircraft in this controlled environment. Class A airspace does not allow for visual flight rules (VFR) operations, so options related to VFR visibility and cloud clearance, as well as operating under visual flight rules, do not apply. Furthermore, there is no altitude requirement specific to Class A that is higher than that of Class B airspace, as both have distinct altitude ceilings and regulations that pertain primarily to communication and IFR usage. Thus, the requirement for continuous communication with ATC is fundamentally what differentiates Class A airspace operation.

4. What is the minimum flight visibility for VFR-On-Top clearance at 10,500 feet during daylight in Class E airspace?

- A. 3 SM with specific cloud distances
- B. 5 SM with specific cloud distances**
- C. 1 SM clear of clouds
- D. 1 SM below clouds

For VFR-On-Top clearance at 10,500 feet during daylight in Class E airspace, the minimum flight visibility is 5 statute miles. This standard aligns with the regulations outlined in the FAA's aeronautical information. In this scenario, the visibility requirement is complemented by cloud clearance criteria that establish how far a pilot must remain from clouds. When operating under VFR-On-Top, pilots are granted the ability to fly at a VFR altitude when above a cloud layer, while still adhering to visual flight rules. The requirement of 5 statute miles ensures that pilots maintain a safe distance for visual navigation and avoids conflicts with other air traffic, thereby enhancing safety. This regulation is tailored to mitigate the risks associated with lower visibility scenarios often encountered in cloud cover, ensuring that VFR operations are conducted with adequate situational awareness. The other choices listed do not meet the established requirements for VFR-On-Top clearance in that airspace and at that altitude, with each of them being either less than the required visibility or not aligned with the specific conditions necessary for VFR-On-Top operations.

5. What minimum in-flight visibility and cloud distance are required in VFR conditions above clouds at 13,500 feet MSL in Class G airspace during daylight?

- A. 5 miles; 1,000 feet above; 2,000 feet horizontal; 500 feet below.
- B. 3 miles; 1,000 feet above; 1 mile horizontal; 1,000 feet below.
- C. 5 miles; 1,000 feet above; 1 mile horizontal; 1,000 feet below.**
- D. 10 miles; 1,500 feet above; 2,000 feet horizontal; 1,000 feet below.

In VFR (Visual Flight Rules) conditions, the regulations specify specific visibility and cloud clearance requirements depending on the airspace classification and altitude. For Class G airspace during daylight above 1,200 feet MSL but below 10,000 feet MSL, the pilot must maintain at least 1,000 feet above the clouds, 1 mile horizontally from any cloud, and 500 feet below the clouds. However, when flying above 10,000 feet MSL in Class G airspace, which is applicable in this scenario at 13,500 feet, the visibility requirement increases to 5 statute miles. The chosen correct answer details the visibility requirement as 5 miles, which aligns with the regulation for maintaining VFR conditions at that altitude in Class G airspace. It also specifies the necessary separation from clouds: 1,000 feet above, 1 mile horizontally, and 1,000 feet below. While there may be variations for different scenarios, the specificity of these distances adheres to regulations intended to ensure safety and adequate visual references for pilots. The answer highlights the critical nature of maintaining both visibility and separation from clouds to ensure that a pilot can navigate safely while visually avoiding other aircraft and obstacles. The inclusion of the distances

6. What action should you take if your No. 1 VOR receiver malfunctions while operating in controlled airspace under IFR?

- A. Continue the flight as cleared; no report is required
- B. Report the malfunction immediately to ATC**
- C. Continue the approach and request a VOR or NDB approach
- D. Revert to visual flight and navigate without IFR assistance

If the No. 1 VOR receiver malfunctions while operating in controlled airspace under IFR, reporting the malfunction immediately to ATC is the correct action because it ensures that air traffic control is aware of the situation. This communication allows ATC to assess your aircraft's navigation capabilities and make any necessary adjustments to your flight plan or provide assistance in managing traffic around you. Reporting the VOR malfunction is crucial for maintaining safety and situational awareness within controlled airspace. It allows other controllers and pilots to understand that your navigation information may be compromised, which could impact air traffic management decisions and your flying environment. Maintaining open communication with ATC enhances overall safety during IFR flights, as it ensures that everyone is aware of any potential navigation issues that could affect the safe operation of the flight. The other options either neglect reporting the issue or suggest actions that could compromise safety or visibility for both the pilot and other airspace users.

7. Which altitude below which no aircraft may operate under IFR over mountainous terrain?

- A. 1,500 feet above the highest obstacle**
- B. 2,000 feet above the highest obstacle**
- C. 3,000 feet above the highest obstacle**
- D. 4,000 feet above the highest obstacle**

The correct altitude for operations under Instrument Flight Rules (IFR) over mountainous terrain requires aircraft to maintain a minimum vertical separation above obstacles to ensure safety during flight. The appropriate altitude is 2,000 feet above the highest obstacle within a horizontal distance of 4 nautical miles from the course to be flown. This regulation is in place to account for the increased risk associated with mountainous terrain, where sudden changes in elevation can lead to hazardous situations if not adequately managed. Opting for this minimum altitude helps provide a buffer that allows pilots to have enough clearance from the terrain, regardless of their flying conditions. This is a crucial safety measure aimed at preventing accidents related to controlled flight into terrain, which is more common in mountainous areas due to the challenges posed by varying elevation and visibility conditions.

8. An abrupt change from climb to straight-and-level flight can create which illusion?

- A. Tumbling backwards.**
- B. A nose-up attitude.**
- C. A descent with the wings level.**
- D. A steep turn to the left.**

The correct answer is that an abrupt change from climb to straight-and-level flight can create the illusion of tumbling backwards. This phenomenon is related to how the body perceives changes in motion. During a climb, the body is experiencing a sensory input that indicates an upward movement. When the aircraft then suddenly levels off, the change in acceleration can confuse the vestibular system, which is responsible for balance and spatial orientation. As the pilot transitions from climb to level flight, the sudden reduction in vertical acceleration may lead them to feel as though they are still climbing or potentially falling backward. This perceived backward motion is often due to the brain's reaction to the rapid change in forces acting on the body, especially if the pilot is not aware or prepared for the transition. Such an illusion can impact pilot performance and situational awareness, making it crucial for pilots to maintain control and to rely on instruments during such transitions to avoid potential disorientation or misinterpretation of flight conditions.

9. What is an important requirement for IFR flight planning regarding weather conditions?

- A. The pilot must file a flight plan regardless of weather.
- B. Weather conditions must meet minimum VFR requirements.
- C. Weather must not be less than IFR minimums.**
- D. Only good weather is needed for IFR flight.

When planning for IFR (Instrument Flight Rules) flights, it is essential that weather conditions do not fall below the established IFR minimums. This requirement ensures the safety and operability of the flight in various weather scenarios. IFR minimums define the lowest weather conditions under which an aircraft can legally operate in IFR, ensuring pilots have adequate visibility and cloud clearance to navigate safely while relying on instruments. These minimums are crucial as they provide a baseline for visibility and cloud cover, helping to maintain safe distances from terrain and other aircraft. This adherence to IFR minimums is particularly important in ensuring pilots are equipped to handle navigation and communication under instrument conditions, thereby facilitating safe travel regardless of the external weather. In contrast, while filing a flight plan is important, it does not explicitly relate to weather minimums. Additionally, minimum VFR requirements focus on different criteria relevant to visual flight rules, which are not applicable in this context since the question pertains specifically to IFR flight. Furthermore, the notion that only good weather is needed for IFR flight is misleading, as IFR operations allow for flights in a wider range of conditions, provided they meet the requisite minimums.

10. What minimum aircraft equipment is required for operation within Class C airspace?

- A. Two-way communications and Mode C transponder.**
- B. Two-way communications.
- C. Transponder and DME.
- D. Only a transponder.

The correct answer highlights the essential equipment necessary for operating within Class C airspace: two-way communications and a Mode C transponder. Class C airspace is typically around airports with a significant amount of passenger and cargo traffic, necessitating enhanced communication and surveillance capabilities. Having two-way communications is crucial because it allows pilots to communicate with air traffic control (ATC), ensuring safe separation from other aircraft within that active airspace. The requirement for a Mode C transponder further enhances safety by providing ATC with information on the aircraft's altitude, which is vital for maintaining vertical separation between aircraft and facilitating efficient traffic management. This combination of equipment ensures that aircraft can both receive instructions from ATC and relay important data about their position and altitude, which is essential in the busy environment of Class C airspace. The other choices lack one or both of these crucial elements, making them insufficient for compliance with the regulations governing Class C operations.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://instrumetgroundirareg.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE