

Instrument Flight Rules (IFR) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. If during an ILS approach in IFR conditions, the approach lights are not visible upon arrival at the DH, what must the pilot do?**
 - A. Immediately execute the missed approach procedure**
 - B. Continue the approach and descend to the localizer MDA**
 - C. Continue the approach to the approach threshold of the ILS runway**
 - D. Attempt to contact ATC for further instructions**
- 2. When cleared to execute a sidestep maneuver, when should a pilot begin the maneuver?**
 - A. At the minimum altitude for a circling approach**
 - B. As soon as the runway is in sight**
 - C. At a specified minimum distance from the runway**
 - D. At the localizer MDA minimum altitude**
- 3. How can the rate of turn be increased while decreasing the radius of turn?**
 - A. By decreasing airspeed and shallowing the bank.**
 - B. By decreasing airspeed and increasing the bank.**
 - C. By increasing airspeed and decreasing the bank.**
 - D. By maintaining constant airspeed and decreasing the bank.**
- 4. What limitation is imposed on a newly certificated commercial airplane pilot without an instrument rating?**
 - A. May carry passengers for hire up to 75 NM at night**
 - B. May not carry passengers for hire across any distance**
 - C. Limited to 50 NM for cross-country flights**
 - D. No limitations apply**
- 5. What does the symbol at GRICE intersection on an IFR low chart signify?**
 - A. A localizer-only approach is available**
 - B. The localizer has an additional navigation function**
 - C. GRICE intersection serves as the FAF for the ILS approach**
 - D. A waypoint with no navigation function**

6. What service is provided by departure control to an IFR flight when operating from within the outer area of Class C airspace?

- A. Separation from all aircraft**
- B. Position and altitude of all traffic within 2 miles of the IFR pilot's line of flight and altitude**
- C. Separation from all IFR aircraft and participating VFR aircraft**
- D. Providing weather updates and condition reports**

7. What is the maximum pressure altitude you can fly without supplemental oxygen for more than 30 minutes?

- A. 10,500 ft**
- B. 12,000 ft**
- C. 12,500 ft**
- D. 14,000 ft**

8. What type of temperature inversion is commonly produced by ground radiation on clear, cool nights?

- A. warm air being lifted rapidly aloft in mountainous terrain**
- B. movement of warmer air under colder air**
- C. ground radiation cooling a layer of air**
- D. cool air being forced up over warm air**

9. What is the minimum visibility requirement in VFR on top conditions at 12,500 ft MSL?

- A. 3 statute miles**
- B. 5 statute miles**
- C. 1 statute mile**
- D. 10 statute miles**

10. What is one visual cue indicating supercooled large water droplet (SLD) conditions?

- A. Ice forming on the leading edge of the wing**
- B. Ice forming on antennas and other protruding parts of the aircraft**
- C. Ice forming on the propeller spinner and reaching back to the propeller blades**
- D. Clear air with no visible moisture**

Answers

SAMPLE

1. A
2. B
3. B
4. C
5. B
6. C
7. C
8. C
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. If during an ILS approach in IFR conditions, the approach lights are not visible upon arrival at the DH, what must the pilot do?

- A. Immediately execute the missed approach procedure**
- B. Continue the approach and descend to the localizer MDA**
- C. Continue the approach to the approach threshold of the ILS runway**
- D. Attempt to contact ATC for further instructions**

When conducting an Instrument Landing System (ILS) approach, the Decision Height (DH) is a critical point at which the pilot must make a decision based on visibility and whether the required visual references are available. If the approach lights, which provide visual cues for a safe landing, are not visible upon reaching the DH, the pilot is required to execute the missed approach procedure. This decision is grounded in safety protocols that ensure pilots do not continue the landing if they cannot properly see the runway environment, which includes the approach lights. The rationale is that upon reaching the DH, the pilot must either have the necessary visual references to proceed safely to a landing or initiate the missed approach. This is crucial as continuing the descent without adequate visual references could lead to unsafe conditions, including the risk of landing on an incorrect surface or at an inappropriate time. In contrast, the other choices would not align with safe flying practices under IFR conditions. Continuing the approach to the localizer MDA or the approach threshold without necessary visual references increases the risk of an unsafe landing, while attempting to contact ATC for further instructions could delay the required decision-making and compromise safety.

2. When cleared to execute a sidestep maneuver, when should a pilot begin the maneuver?

- A. At the minimum altitude for a circling approach**
- B. As soon as the runway is in sight**
- C. At a specified minimum distance from the runway**
- D. At the localizer MDA minimum altitude**

When cleared to execute a sidestep maneuver, the pilot should begin the maneuver as soon as the runway is in sight. This is critical because the sidestep maneuver involves transitioning from an approach to one runway to land on an adjacent runway, typically when they are within a certain distance of each other. The pilot must maintain visual awareness and ensure that they can clearly see the intended runway before beginning the maneuver. Conducting the sidestep maneuver should be done while adhering to visual flight rules even within IFR conditions, ensuring that safety and situational awareness remain top priorities. Transitioning based on visual confirmation of the runway ensures that the pilot has adequate depth perception and awareness of surrounding obstacles and air traffic, which is essential for a successful landing. The other answer options do not align with the operational intent of sidestep maneuvers. For example, beginning the maneuver at the minimum altitude for a circling approach or at a specified distance from the runway could lead to unpleasant situations if the pilot does not have the runway in sight, impacting their ability to maneuver safely. Similarly, initiating the process at the localizer MDA minimum altitude without visual confirmation could also jeopardize safety.

3. How can the rate of turn be increased while decreasing the radius of turn?

- A. By decreasing airspeed and shallowing the bank.**
- B. By decreasing airspeed and increasing the bank.**
- C. By increasing airspeed and decreasing the bank.**
- D. By maintaining constant airspeed and decreasing the bank.**

The rate of turn can be increased while simultaneously decreasing the radius of turn by decreasing airspeed and increasing the bank. When an aircraft enters a turn, the bank angle directly influences the turn's rate and radius. A steeper bank angle facilitates a tighter turn due to the increased load factor, which allows for a sharper turn and thus a reduced radius. This occurs because the increased bank angle produces more horizontal lift, allowing the aircraft to change direction more quickly. At the same time, decreasing airspeed effectively increases the turn rate because a slower speed means the aircraft will have less lateral inertia resisting the turn. This combination allows the aircraft to turn more rapidly while maintaining a smaller radius, which is critical for maneuvers in close quarters or when navigating around obstacles. Overall, the relationship between bank angle, airspeed, and turn radius is a fundamental aspect of flight dynamics and is crucial for effective maneuvering under Instrument Flight Rules (IFR).

4. What limitation is imposed on a newly certificated commercial airplane pilot without an instrument rating?

- A. May carry passengers for hire up to 75 NM at night**
- B. May not carry passengers for hire across any distance**
- C. Limited to 50 NM for cross-country flights**
- D. No limitations apply**

A newly certificated commercial airplane pilot without an instrument rating is limited to 50 nautical miles for cross-country flights. This restriction is in place because pilots without an instrument rating do not have the necessary training and skills to fly in instrument meteorological conditions (IMC) or rely on instruments for navigation and flight control. This limitation ensures safety when operating in potentially hazardous conditions or environments where navigational challenges might arise. Commercial pilots are allowed to carry passengers for hire under certain conditions, but those conditions are strictly defined to ensure safety. Without the instrument rating, the pilot cannot operate beyond that 50 nautical mile limit, which helps mitigate risks associated with unfamiliar territories and weather that could lead to instrument-related challenges. Thus, this limitation helps maintain safety and instills a sense of caution amongst newly licensed pilots who are still building their experience.

5. What does the symbol at GRICE intersection on an IFR low chart signify?

- A. A localizer-only approach is available
- B. The localizer has an additional navigation function**
- C. GRICE intersection serves as the FAF for the ILS approach
- D. A waypoint with no navigation function

The symbol at the GRICE intersection on an IFR low chart indicates that the localizer has an additional navigation function. In the context of IFR navigation, intersections can serve multiple purposes, including being waypoints for approaches or supporting navigation using various systems. When a localizer is denoted with additional functions, it is often linked to both guidance for an ILS (Instrument Landing System) approach as well as potential lateral navigation for other operations, like RNAV (Area Navigation) routes. This additional functionality is significant as it informs pilots that while the intersection can be utilized for standard localizer approaches, it also supports inbound or outbound procedures that could leverage both the localizer and other navigational aids. Understanding the nuances of such symbols is crucial for pilots when planning their approach or departure, ensuring that they utilize all navigation aids available effectively and safely.

6. What service is provided by departure control to an IFR flight when operating from within the outer area of Class C airspace?

- A. Separation from all aircraft
- B. Position and altitude of all traffic within 2 miles of the IFR pilot's line of flight and altitude
- C. Separation from all IFR aircraft and participating VFR aircraft**
- D. Providing weather updates and condition reports

When operating from within the outer area of Class C airspace, departure control provides separation services primarily focused on maintaining safe distances between IFR flights and participating VFR (Visual Flight Rules) aircraft. This service is crucial as it ensures that IFR flights have the necessary separation from both other IFR flights and VFR flights that may be operating in the same airspace. The outer area of Class C airspace extends from the surface to a specified altitude, and it is designed to create a structured environment where air traffic can be managed efficiently and safely. The presence of VFR traffic can complicate operations, particularly during departure and arrival phases, when an IFR flight may be transitioning through an area where VFR flights are maneuvering freely. By providing separation from all IFR aircraft and participating VFR aircraft, departure control helps mitigate the risk of potential conflicts, enhancing the safety of all flights operating within and around Class C airspace. This emphasizes the importance of air traffic control in maintaining order in busy airspace environments.

7. What is the maximum pressure altitude you can fly without supplemental oxygen for more than 30 minutes?

- A. 10,500 ft**
- B. 12,000 ft**
- C. 12,500 ft**
- D. 14,000 ft**

The maximum pressure altitude at which a pilot can operate without supplemental oxygen for more than 30 minutes is established based on physiological effects of altitude on human performance. At 12,500 feet, pilots are required to use supplemental oxygen if they exceed this altitude for an extended period. This regulation is in place to mitigate the risk of hypoxia, a condition caused by insufficient oxygen in the body, which can impair cognitive and physical abilities. In practical terms, flying above this altitude without supplemental oxygen for longer durations can lead to diminished performance and increased risk during flight operations. Therefore, the correct answer reflects the regulatory threshold established by aviation authorities concerning safety and pilot health.

8. What type of temperature inversion is commonly produced by ground radiation on clear, cool nights?

- A. warm air being lifted rapidly aloft in mountainous terrain**
- B. movement of warmer air under colder air**
- C. ground radiation cooling a layer of air**
- D. cool air being forced up over warm air**

Ground radiation cooling a layer of air is a phenomenon that occurs on clear, cool nights when the ground loses heat rapidly. During the night, especially when skies are clear, the surface of the Earth cools due to radiation, resulting in the cooling of the air immediately in contact with it. This cooler air becomes denser and tends to settle, creating a layer of air that is colder than the air above it. This situation forms a temperature inversion, where the normal temperature gradient of decreasing temperature with altitude is reversed. In this context, the air near the ground is cooler than the warmer air above, which can lead to an inversion layer that traps air pollutants and influences weather conditions. The critical factor here is the ground's cooling due to radiation, which directly results in this specific type of temperature inversion. The other options are scenarios that do not accurately describe the phenomenon specifically induced by ground radiation. Warm air being lifted in mountainous terrain relates to orographic lifting, the movement of warmer air under colder air usually describes the process of convection, and cool air being forced up over warm air characterizes frontal lifting or convective processes rather than the ground radiation effect.

9. What is the minimum visibility requirement in VFR on top conditions at 12,500 ft MSL?

- A. 3 statute miles**
- B. 5 statute miles**
- C. 1 statute mile**
- D. 10 statute miles**

In VFR (Visual Flight Rules) on top conditions at 12,500 feet MSL, the minimum visibility requirement is 5 statute miles. This standard is established to ensure that pilots have adequate visual reference and can navigate effectively while flying above the clouds. Flying VFR on top means that a pilot is operating in conditions where they are above the overcast or broken cloud layer and should have enough visibility to avoid potential hazards such as other aircraft and terrain. The requirement aligns with the Federal Aviation Administration (FAA) regulations that aim to promote safety by ensuring that pilots have sufficient visibility during flight. This allows for effective situational awareness while also making it easier to maintain visual separation from other air traffic, thus enhancing overall safety in the National Airspace System. In contrast, the other options present regulations that do not apply under these specific conditions at that altitude. For instance, 3 statute miles and 1 statute mile do not meet the minimums set for VFR on top at 12,500 feet MSL.

10. What is one visual cue indicating supercooled large water droplet (SLD) conditions?

- A. Ice forming on the leading edge of the wing**
- B. Ice forming on antennas and other protruding parts of the aircraft**
- C. Ice forming on the propeller spinner and reaching back to the propeller blades**
- D. Clear air with no visible moisture**

The visual cue indicating supercooled large water droplet (SLD) conditions is the formation of ice on the propeller spinner, which can extend back to the propeller blades. This phenomenon occurs because SLDs are larger than typical cloud droplets and can exist in a supercooled state, meaning they remain liquid even below freezing temperatures. When aircraft encounter these supercooled droplets, they tend to freeze upon contact with surfaces that are at or below freezing, leading to noticeable icing. The reason this cue is particularly indicative of SLD conditions is that the formation of ice on the spinner and propagating to the blades indicates that large quantities of supercooled liquid water are present in the atmosphere, capable of creating significant icing problems. This is a clear warning to pilots that they may be flying in conditions that could adversely affect aircraft performance and safety due to the potential for severe ice accumulation. In contrast, other options may represent icing conditions but do not specifically relate to the presence of supercooled large water droplets. For example, while ice forming on the leading edge of the wing or antennas can signal ice accumulation, they are not as directly related to the presence of SLDs as the specific scenario involving the propeller spinner and blades. Clear

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://instrumentflightrules-ifr.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE