

Image Acquisition and Technical Evaluation Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. When using a higher mA setting, what must be adjusted to maintain the same receptor exposure?**
 - A. Increase exposure time**
 - B. Decrease exposure time**
 - C. No adjustment needed**
 - D. Increase distance**

- 2. What is the purpose of using a grid in radiography?**
 - A. To increase image exposure**
 - B. To eliminate scatter radiation**
 - C. To enhance the field of view**
 - D. To increase the focal spot size**

- 3. Which methods reduce the amount of scattered radiation reaching the imaging receptor?**
 - A. Grid devices**
 - B. Restricted focal spot size**
 - C. Beam restrictors**
 - D. All of the above**

- 4. X-ray photon energy is inversely related to which of the following?**
 - A. Photon wavelength**
 - B. Applied milliamperes (mA)**
 - C. Applied kilovoltage (kV)**
 - D. None of the above**

- 5. What type of distortion is caused by misalignment of the tube, part, and IR?**
 - A. Size distortion**
 - B. Shape distortion**
 - C. Magnification**
 - D. Blur**

6. What is the consequence of using a lower kilovoltage on receptor exposure?

- A. Increased receptor exposure**
- B. Decreased receptor exposure**
- C. No effect on receptor exposure**
- D. Unpredictable receptor exposure**

7. What is the significance of using a grid in radiographic imaging?

- A. It increases exposure time**
- B. It reduces the amount of scattered radiation reaching the receptor**
- C. It enhances image brightness**
- D. It limits the x-ray beam size**

8. When using a grid, how does patient exposure change?

- A. It decreases significantly**
- B. It remains unchanged**
- C. It increases significantly**
- D. It may decrease or increase**

9. Which factors are associated with subject contrast in radiography?

- A. Patient thickness**
- B. Tissue density**
- C. Kilovoltage**
- D. All of the above**

10. Spatial resolution is directly related to which of the following factors?

- A. SID**
- B. Tube current**
- C. Focal-spot size**
- D. Both SID and focal-spot size**

Answers

SAMPLE

1. A
2. B
3. C
4. A
5. B
6. B
7. B
8. C
9. D
10. A

SAMPLE

Explanations

SAMPLE

1. When using a higher mA setting, what must be adjusted to maintain the same receptor exposure?

- A. Increase exposure time**
- B. Decrease exposure time**
- C. No adjustment needed**
- D. Increase distance**

When utilizing a higher milliampere (mA) setting in radiography, it is essential to adjust the exposure time in order to maintain consistent receptor exposure. Increasing the mA setting essentially raises the amount of x-ray photons produced in a given time period, which leads to a greater quantity of radiation reaching the imaging receptor. This increase can cause an overexposure if the exposure time remains unchanged. To counteract this, if the mA is increased, the exposure time should be decreased correspondingly. This adjustment ensures that the total amount of radiation reaching the image receptor remains equivalent to what it would have been at the lower mA setting, thereby preserving the same level of exposure on the receptor. This relationship between mA and exposure time is a basic principle of radiographic technique and is vital for optimizing image quality while minimizing patient dose.

2. What is the purpose of using a grid in radiography?

- A. To increase image exposure**
- B. To eliminate scatter radiation**
- C. To enhance the field of view**
- D. To increase the focal spot size**

The purpose of using a grid in radiography is primarily to eliminate scatter radiation. In radiographic imaging, scatter radiation occurs when x-rays interact with matter in a way that deviates from their original path. This scatter can degrade image quality by reducing contrast and obscuring fine details. A grid is an effective tool that consists of a series of thin lead strips placed between the patient and the imaging receptor. These strips are aligned to allow primary radiation (the useful information that forms the image) to pass through while absorbing a significant portion of the scatter radiation. As a result, the grid improves the clarity and contrast of the resulting images, leading to higher diagnostic accuracy. In contrast, the other options do not accurately reflect the primary function of a grid. Increasing image exposure refers to adjusting the amount of radiation reaching the image receptor, which is not the focus of a grid's design. Enhancing the field of view generally relates to the imaging equipment and technique rather than the application of a grid. Increasing the focal spot size pertains to the characteristics of the x-ray tube and does not relate to the purpose of a grid in managing scatter radiation.

3. Which methods reduce the amount of scattered radiation reaching the imaging receptor?

- A. Grid devices**
- B. Restricted focal spot size**
- C. Beam restrictors**
- D. All of the above**

To understand why the selection of beam restrictors is seen as the correct answer, it's essential to recognize their role in the imaging process. Beam restrictors serve to limit the area of the patient being irradiated, thereby reducing the volume of tissues that produce scatter radiation. Scatter radiation occurs when the primary beam interacts with the tissues and structures within the body, and it can degrade image quality by leading to fog and decreasing contrast. By using beam restrictors, more of the primary beam is directed towards the area of interest while minimizing exposure to surrounding tissues that would contribute to scatter. This means less scatter radiation reaches the imaging receptor, leading to clearer images. While grid devices and restricted focal spot size also play important roles in managing scatter and enhancing image quality, they function differently. Grid devices are designed to absorb some of the scatter before it reaches the receptor but do not prevent scatter from occurring; they work to mitigate its effects. A restricted focal spot size improves spatial resolution and contrast by minimizing the area from which radiation is emitted but does not directly influence the amount of scatter generated within the patient. Thus, while both grid devices and restricted focal spots are beneficial, beam restrictors are specifically aimed at reducing the initial production of scatter before it becomes a factor.

4. X-ray photon energy is inversely related to which of the following?

- A. Photon wavelength**
- B. Applied milliamperes (mA)**
- C. Applied kilovoltage (kV)**
- D. None of the above**

The relationship between photon energy and wavelength is a fundamental concept in physics, particularly in the context of electromagnetic radiation, which includes X-rays. According to the equation $(E = \frac{hc}{\lambda})$, where (E) is the energy of the photon, (h) is Planck's constant, (c) is the speed of light, and (λ) is the wavelength, it is clear that photon energy is inversely proportional to wavelength. This means that as the wavelength decreases (i.e., becomes shorter), the energy of the photon increases, and vice versa. In the context of X-ray production and imaging, a shorter wavelength corresponds to a higher energy photon, which is essential for penetrating matter and producing clear images. Understanding this inverse relationship is crucial for manipulating X-ray settings to achieve the desired image quality. The other options, such as the applied milliamperes (mA) and applied kilovoltage (kV), do affect the quantity and quality of the X-ray beam but do not have an inverse relationship with photon energy. Instead, while mA relates to the number of electrons flowing and kV relates to the acceleration of electrons in the tube, neither directly defines how

5. What type of distortion is caused by misalignment of the tube, part, and IR?

- A. Size distortion**
- B. Shape distortion**
- C. Magnification**
- D. Blur**

When the x-ray tube, the anatomical part being imaged, and the image receptor (IR) are not properly aligned, shape distortion occurs. This misalignment can result in the object being represented inaccurately on the radiographic image, leading to alterations in the perceived shape of the anatomical structures. For instance, parts may appear elongated, foreshortened, or otherwise distorted based on the angle at which the x-rays enter the body and subsequently strike the IR. This type of distortion is critical to recognize because it directly impacts the diagnostic quality of radiographic images. If the shapes of organs or bones appear distorted, it can lead to potential misdiagnosis. Techniques to prevent shape distortion include ensuring proper positioning of the patient and equipment, using the correct angles when taking images, and often incorporating techniques such as compensation for the tube angling when necessary. Other options refer to different phenomena: size distortion relates to changes in the overall size of the image due to varying distances from the tube or IR, magnification refers to an overall increase in size due to those same factors but doesn't directly alter shape. Blur is generally caused by motion or poor focus rather than misalignment.

6. What is the consequence of using a lower kilovoltage on receptor exposure?

- A. Increased receptor exposure**
- B. Decreased receptor exposure**
- C. No effect on receptor exposure**
- D. Unpredictable receptor exposure**

Using a lower kilovoltage (kV) during an imaging procedure results in decreased receptor exposure. This is primarily because kilovoltage is directly related to the energy of the x-ray photons produced. A lower kV generates x-ray beams with lower energy, which can result in less penetration through the tissues being imaged. As a consequence, more x-rays are absorbed by the tissue rather than reaching the receptor, which leads to a reduction in the overall exposure recorded on the receptor. Low-energy x-rays are less effective at penetrating body structures, thus resulting in fewer photons being available for interaction with the receptor. In imaging practices, achieving adequate receptor exposure is critical for obtaining quality images; hence a lower kV can adversely affect image quality by not providing the necessary contrast and detail required for accurate diagnoses.

7. What is the significance of using a grid in radiographic imaging?

- A. It increases exposure time
- B. It reduces the amount of scattered radiation reaching the receptor**
- C. It enhances image brightness
- D. It limits the x-ray beam size

The significance of using a grid in radiographic imaging lies primarily in its ability to reduce the amount of scattered radiation that reaches the receptor. When X-rays penetrate the body, not all of them travel in a straight line to the receptor; some are scattered by tissues and bones. This scattered radiation can blur the image and lower its contrast. A grid is designed with a series of lead strips that are aligned in such a way that they absorb most of the scattered radiation while allowing the primary X-rays that contribute to the image to pass through. By minimizing the impact of scatter, the grid enhances the overall quality of the image, leading to better detail and contrast. This is particularly important in radiographic procedures where the precision of the image is crucial for diagnosis. This option highlights the grid's role in improving image clarity and diagnostic capability, which is essential for accurate interpretation of medical images.

8. When using a grid, how does patient exposure change?

- A. It decreases significantly
- B. It remains unchanged
- C. It increases significantly**
- D. It may decrease or increase

When using a grid, patient exposure increases significantly primarily due to the grid's purpose of improving image quality by reducing scatter radiation. Grids are designed to absorb scattered photons that would otherwise reach the image receptor, thus enhancing contrast and sharpness of the radiographic image. However, by absorbing some of the useful radiation as well, higher exposure levels are required to ensure sufficient density and detail in the final image. To achieve the necessary levels of usable radiation, the radiologic technologist must increase the exposure settings (such as milliampere-seconds or kV). As a result, the amount of radiation that the patient is exposed to tends to rise significantly during procedures involving grids, necessitating careful consideration of these exposure factors to manage dose effectively while maintaining diagnostic image quality. This understanding helps for optimization in clinical practice to balance image quality and patient safety.

9. Which factors are associated with subject contrast in radiography?

- A. Patient thickness**
- B. Tissue density**
- C. Kilovoltage**
- D. All of the above**

In radiography, subject contrast refers to the ability to distinguish between different structures or tissues in an image. This capability is influenced by several interrelated factors that affect how X-rays interact with the body. With patient thickness, thicker areas of tissue typically lead to greater absorption of X-rays, resulting in less transmitted radiation and reduced contrast in the image. This means that as the thickness of the patient increases, the variation in X-ray absorption between different tissues can become more pronounced or diminished, impacting the overall contrast. Tissue density is another critical factor. Different tissues such as muscle, fat, and bone have varying densities, which affects their ability to absorb X-rays. Denser tissues absorb more radiation, leading to darker areas on the radiograph, while less dense tissues allow more X-rays to pass through, creating lighter areas. This differential absorption creates the contrast necessary for visual differentiation between types of tissues. Kilovoltage, or the peak voltage applied in X-ray production, also plays a significant role. Higher kilovoltage increases the energy of the X-rays, which can penetrate denser tissues more effectively, potentially leading to reduced contrast. Conversely, lower kilovoltage produces a greater difference in absorption between various tissues, enhancing contrast but reducing overall exposure. Considering

10. Spatial resolution is directly related to which of the following factors?

- A. SID**
- B. Tube current**
- C. Focal-spot size**
- D. Both SID and focal-spot size**

Spatial resolution refers to the ability of an imaging system to distinguish fine details in an image. It is influenced by several factors, including the distance from the x-ray tube to the image receptor and the size of the focal spot. When considering the correct choice, it's important to recognize how the source-to-image distance (SID) impacts spatial resolution. Increasing the SID typically enhances spatial resolution because it reduces the penumbra effect, where the edges of objects appear blurred. A greater distance allows for a more focused beam of radiation to be delivered to the image receptor, resulting in sharper images with finer detail. This is why SID is a key factor directly affecting spatial resolution. Focal-spot size also plays a crucial role in spatial resolution. A smaller focal spot leads to sharper images as it produces less geometric unsharpness. However, the query specifies a direct relational aspect without indicating a combination of multiple influences; hence the choice that highlights SID alone does not completely encompass the multifaceted nature of spatial resolution influenced by focal-spot size. While tube current can affect image quality through its impact on radiation exposure and noise, it does not directly influence spatial resolution in the same clear manner as SID does. Thus, considering the relationships at play, the most direct factor impacting

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://imageacquisitiontecheval.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE