

IB Design Technology Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the term for the process in which a market accepts a new idea or product?**
 - A. Diffusion**
 - B. Innovation**
 - C. Suppression**
 - D. Adaptation**

- 2. Which statement best describes a battery?**
 - A. A device that stores energy without conversion**
 - B. A device made of one or more electrochemical cells converting stored chemical energy into electrical energy**
 - C. A mechanical system for generating power**
 - D. A unit that can only generate energy when constantly powered**

- 3. Which statement is true regarding scale models?**
 - A. They are always life-size replicas**
 - B. They can be smaller or larger than the actual design**
 - C. They are primarily used for conceptual discussions**
 - D. They have no relation to the actual product**

- 4. What does electrical resistivity measure?**
 - A. A material's ability to withstand deformation**
 - B. A material's ability to conduct electricity**
 - C. A material's thermal conductivity**
 - D. A material's density**

- 5. Which of the following best describes a superalloy?**
 - A. Alloys with poor mechanical strength**
 - B. Alloys with excellent thermal properties and surface stability**
 - C. Low-cost materials**
 - D. Pure metals with no additives**

6. What does percentile range indicate?

- A. The average measurement of a population**
- B. The proportion of a population with a given dimension at or less than a given value**
- C. The maximum capacity an individual can handle**
- D. A method of data visualization**

7. What does individual energy generation refer to?

- A. The collective generation of energy for a community**
- B. The use of devices by individuals to create small amounts of energy**
- C. The large-scale production of energy from renewable sources**
- D. The regulation of energy consumption by households**

8. What does copyright give the creator?

- A. Exclusive rights for a limited period**
- B. The ability to control the distribution of their inventions**
- C. Protection against service marks**
- D. Full rights for unlimited time**

9. Which principle aims to manage potential risks in production and use regarding the environment?

- A. The cradle to grave principle**
- B. The precautionary principle**
- C. The prevention principle**
- D. The eco-design principle**

10. Plasticity indicates a material's ability to do what?

- A. Return to its original shape after removal of stress**
- B. Change shape permanently**
- C. Conduct electricity when heated**
- D. Remain rigid under applied force**

Answers

SAMPLE

1. A
2. B
3. B
4. B
5. B
6. B
7. B
8. A
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What is the term for the process in which a market accepts a new idea or product?

- A. Diffusion**
- B. Innovation**
- C. Suppression**
- D. Adaptation**

The process in which a market accepts a new idea or product is referred to as diffusion. This concept encompasses how innovations spread through various channels and across different segments of society, eventually reaching widespread acceptance. In the context of design technology and market behavior, diffusion is crucial because it reflects not only the initial adoption by early users but also how that idea or product becomes integrated into mainstream usage over time. Diffusion involves several stages, including awareness, interest, evaluation, trial, and adoption. It highlights the importance of consumer perception and external factors, such as marketing strategies and cultural attitudes, that influence whether or not a product gains acceptance. Understanding how diffusion works is vital for designers and entrepreneurs, as it helps them to strategize effectively for launching new products in the market. The other terms, while related to the field, do not specifically describe the acceptance process in the same way. Innovation refers to the creation of new ideas or products, suppression implies the rejection or minimizing of a product's presence, and adaptation focuses on the changes made to fit new conditions or environments, but doesn't capture the broader process of market acceptance.

2. Which statement best describes a battery?

- A. A device that stores energy without conversion**
- B. A device made of one or more electrochemical cells converting stored chemical energy into electrical energy**
- C. A mechanical system for generating power**
- D. A unit that can only generate energy when constantly powered**

The statement that describes a battery as a device made of one or more electrochemical cells converting stored chemical energy into electrical energy is accurate. A battery functions primarily through electrochemical reactions, which define its ability to store energy chemically and then release it in the form of electrical energy when needed. In a battery, the electrochemical cells consist of two electrodes (an anode and a cathode) separated by an electrolyte. When the battery is connected to a circuit, a chemical reaction occurs, allowing electrons to flow from the anode to the cathode, producing an electric current. This process is fundamental to how batteries work, making the correct statement not only relevant but essential to understanding the core functionality of batteries in various applications, such as powering electronic devices and electric vehicles. The other options do not accurately capture the comprehensive nature of what a battery does or how it operates. A battery does not simply store energy without conversion, nor is it strictly a mechanical system or a unit that requires constant power to generate energy. This highlights the unique aspects of batteries that primarily depend on their chemical structure and the conversion process involved in energy release.

3. Which statement is true regarding scale models?

- A. They are always life-size replicas
- B. They can be smaller or larger than the actual design**
- C. They are primarily used for conceptual discussions
- D. They have no relation to the actual product

Scale models are representations of an object that are not limited to being life-size but can indeed be either smaller or larger than the actual product they aim to depict. This flexibility allows designers and engineers to create models that can be easily manipulated and studied, making it easier to examine proportions, aesthetics, and functionality without the need for constructing a full-size version. When using scale models in design, practitioners can effectively communicate ideas, test theories, and analyze aspects of the design in a controlled and manageable form. They provide a tangible reference that helps in visualization and can aid in identifying potential design flaws before final production processes begin. By utilizing models of various scales, designers can engage in detailed dialogues around the size, shape, and overall impact of their work. The nature of scale models thus emphasizes their utility in exploring both design elements and functional characteristics, rather than limiting them to a single size or purpose.

4. What does electrical resistivity measure?

- A. A material's ability to withstand deformation
- B. A material's ability to conduct electricity**
- C. A material's thermal conductivity
- D. A material's density

Electrical resistivity is a fundamental property that quantifies how strongly a given material opposes the flow of electric current. It is a crucial parameter in electrical engineering and material science, indicating how easily electrons can move through a substance. The lower the resistivity, the better the material is at conducting electricity. Materials with high resistivity, on the other hand, are poor conductors and are often used as insulators. To elaborate, when a voltage is applied across a material, its resistivity dictates how much current will pass through it. For example, metals such as copper and aluminum have low resistivity, making them excellent conductors, while rubber and glass have high resistivity, serving effectively as insulators. Understanding electrical resistivity is essential for designing circuits, selecting materials for specific applications, and ensuring the safety and efficiency of electrical systems.

5. Which of the following best describes a superalloy?

- A. Alloys with poor mechanical strength
- B. Alloys with excellent thermal properties and surface stability**
- C. Low-cost materials
- D. Pure metals with no additives

A superalloy is best described by its excellent thermal properties and surface stability, which are crucial for high-performance applications, particularly in extreme environments like aerospace and power generation. These materials are designed to withstand high temperatures while maintaining their strength and resistance to oxidation and corrosion. Superalloys typically contain a base metal - often nickel or cobalt - and various alloying elements that enhance their mechanical properties and resistance to degradation. The ability to perform under high stress and temperature conditions is what distinguishes superalloys from other types of alloys. They are engineered specifically to retain structural integrity and resist malfunctions over prolonged exposure to challenging conditions. This definition clearly contrasts with the other options. Alloys with poor mechanical strength would not be classified as superalloys, as this term implies superior performance characteristics. Low-cost materials do not necessarily correlate with the specialized, high-performance demands placed on superalloys, which typically require expensive raw materials and advanced manufacturing processes. Lastly, pure metals with no additives lack the essential enhancements that alloys provide, making them unsuitable for the rigorous applications where superalloys excel. Thus, the statement about excellent thermal properties and surface stability accurately captures the essence of what superalloys are all about.

6. What does percentile range indicate?

- A. The average measurement of a population
- B. The proportion of a population with a given dimension at or less than a given value**
- C. The maximum capacity an individual can handle
- D. A method of data visualization

The percentile range indicates the proportion of a population with a given dimension at or less than a specified value. This means that if you are looking at a specific percentile, for example, the 70th percentile, it tells you that 70% of the population has a value that is equal to or below that specific measurement. This allows researchers and designers to understand how a particular measurement or characteristic is distributed throughout a population, which is crucial in fields such as design, education, and health, where understanding the distribution of measurements can inform decisions and strategies. In contrast, the other options focus on different statistical or analytical concepts. For instance, the average measurement refers to a central tendency, which provides a single summary metric but does not convey information about the entire range of data. Maximum capacity speaks to an individual's limits which is more about personal metrics than population statistics. Lastly, data visualization refers to the way data is represented graphically, which does not directly relate to the concept of percentiles.

7. What does individual energy generation refer to?

- A. The collective generation of energy for a community**
- B. The use of devices by individuals to create small amounts of energy**
- C. The large-scale production of energy from renewable sources**
- D. The regulation of energy consumption by households**

Individual energy generation refers to the use of devices by individuals to create small amounts of energy, typically at a personal or household level. This concept emphasizes the capabilities of individuals or small entities to harness energy from renewable sources such as solar panels, small wind turbines, or even micro-hydro systems for their own consumption. By generating their own energy, individuals can reduce reliance on grid-supplied power, lower their energy bills, and contribute to sustainability efforts. This approach not only empowers homeowners and individuals but also promotes a distributed energy system, enabling greater resilience and energy independence within a larger energy framework. This concept stands in contrast to the other options, which focus on community-level energy initiatives, large-scale production of energy, and consumer regulation, rather than individual efforts to produce energy at home.

8. What does copyright give the creator?

- A. Exclusive rights for a limited period**
- B. The ability to control the distribution of their inventions**
- C. Protection against service marks**
- D. Full rights for unlimited time**

Copyright grants creators exclusive rights for a limited period, which allows them to control how their original works—such as literary, musical, and artistic creations—are used. This exclusivity means that creators can decide who can reproduce, distribute, perform, or display their work, preventing others from using it without permission. The limited duration of copyright is intentional, encouraging creativity and innovation while eventually allowing works to enter the public domain for wider accessibility and use. The other options do not accurately represent the nature of copyright. The ability to control the distribution of inventions is typically covered by patents rather than copyright, while protection against service marks relates to trademark law, not copyright. Lastly, full rights for unlimited time contradict the fundamental principle of copyright, which is designed to expire after a specific term to promote a balance between creators' rights and public access to creative works.

9. Which principle aims to manage potential risks in production and use regarding the environment?

- A. The cradle to grave principle**
- B. The precautionary principle**
- C. The prevention principle**
- D. The eco-design principle**

The precautionary principle is designed to manage potential risks associated with production and use, particularly concerning environmental impacts. This principle advocates for cautious decision-making in the face of uncertainty. It asserts that if an action, policy, or product may cause harm to the public or the environment, in the absence of scientific consensus, the burden of proof falls on those advocating for the action rather than those opposing it. By implementing the precautionary principle, designers and manufacturers are encouraged to consider the potential negative impacts of their products and processes on the environment, even when definitive scientific evidence is lacking. This proactive approach ensures that measures are taken to mitigate risks before harm occurs, fostering sustainable practices and responsible innovation. In contrast, the cradle to grave principle focuses on the lifecycle of a product from production to disposal, while the prevention principle emphasizes avoiding environmental harm through proactive measures. The eco-design principle involves integrating environmental considerations into product design. While all these principles promote environmental responsibility, the precautionary principle specifically addresses the management of risks when certainty is not attainable.

10. Plasticity indicates a material's ability to do what?

- A. Return to its original shape after removal of stress**
- B. Change shape permanently**
- C. Conduct electricity when heated**
- D. Remain rigid under applied force**

Plasticity refers to a material's capacity to undergo significant deformation under an applied force without breaking, and importantly, this deformation is permanent once the load is removed. This ability to change shape permanently is crucial in various applications, particularly in manufacturing processes like molding and shaping metals and plastics. When a material is plastic, it means that it can be subjected to stress that exceeds its yield strength, allowing it to flow and take on a new shape. This characteristic distinguishes plastic materials from elastic ones, which can return to their original shape after the stress is removed. Understanding plasticity is essential in design and engineering, as it allows designers to predict how materials will behave in structures or products and to choose materials that will facilitate the desired performance in the final design.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ibdesogntech.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE