

IB Chemistry Standard Level (SL) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which of the following is true about an element?**
 - A. It can be broken down into simpler substances**
 - B. It is a combination of different elements**
 - C. It contains only one type of atom**
 - D. It must exist in a compound form**

- 2. What type of bond is formed when electrons are transferred from one atom to another?**
 - A. Covalent bond**
 - B. Metallic bond**
 - C. Ionic bond**
 - D. Hydrogen bond**

- 3. What is the relationship between the mass of a substance and the number of moles?**
 - A. The mass is inversely proportional to the number of moles**
 - B. The mass is independent of the number of moles**
 - C. The mass is directly proportional to the number of moles, as described by the equation: mass = moles \times molar mass**
 - D. The mass is always equal to the number of moles**

- 4. What role does molar mass play in determining the mass of a substance?**
 - A. It modifies the number of protons in an atom**
 - B. It affects the volume of a gas under pressure**
 - C. It is used to calculate mass when multiplied by the number of moles**
 - D. It has no effect on the mass of a substance**

- 5. What describes the attraction between two neighboring positive ions for the delocalized electrons between them?**
 - A. Hydrogen bond**
 - B. Metallic bond**
 - C. Ionic bond**
 - D. Covalent bond**

6. When measuring a quantity, what indicates that data is precise?

- A. The results are very close to the actual value**
- B. The results vary widely from the average**
- C. The results cluster closely around a central value**
- D. The results consistently show high or low values**

7. In an experiment, what does it mean if measurements are accurate but not precise?

- A. They are close to the true value but vary widely**
- B. They are consistently close to each other**
- C. They have a small range of values**
- D. They lead to the same conclusion every time**

8. What are the electrons in the highest energy level of an atom called?

- A. Core electrons**
- B. Valence electrons**
- C. Protons**
- D. Inner electrons**

9. What does molar mass indicate?

- A. The volume of one mole of a gas**
- B. The mass of one mole of a substance**
- C. The number of moles in a solution**
- D. The density of a solid**

10. Which statement best describes a Lewis acid?

- A. An electron pair donor**
- B. An electron pair acceptor**
- C. A compound that donates protons**
- D. A substance that increases the concentration of hydroxide ions**

Answers

SAMPLE

1. C
2. C
3. C
4. C
5. B
6. C
7. A
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Which of the following is true about an element?

- A. It can be broken down into simpler substances**
- B. It is a combination of different elements**
- C. It contains only one type of atom**
- D. It must exist in a compound form**

An element is defined as a pure substance that consists of only one type of atom. Each element is characterized by its atomic number, which is the number of protons in its nucleus. This unique property means that elements cannot be broken down into simpler substances through chemical means. They can exist in various forms, such as solids, liquids, or gases, but they remain as a single type of atom throughout. In contrast, a combination of different elements would describe a compound rather than an element itself. Moreover, elements can exist independently and do not have to be part of a compound; they can be found as monoatomic gases like noble gases (e.g., helium, argon) or as solid forms like metals (e.g., iron, gold). Thus, the statement emphasizing that an element contains only one type of atom accurately captures the essential characteristic that defines what an element is.

2. What type of bond is formed when electrons are transferred from one atom to another?

- A. Covalent bond**
- B. Metallic bond**
- C. Ionic bond**
- D. Hydrogen bond**

When electrons are transferred from one atom to another, an ionic bond is formed. This type of bond typically occurs between a metal and a non-metal. In this process, the metal atom loses one or more electrons, becoming a positively charged ion (cation), while the non-metal atom gains those electrons, resulting in a negatively charged ion (anion). The electrostatic attraction between the oppositely charged ions creates a strong ionic bond. This behavior is contrasted with covalent bonds, where electrons are shared between atoms, and metallic bonds, characterized by a 'sea of electrons' that allows for conductivity and malleability. Hydrogen bonds, on the other hand, are relatively weak attractions that occur between hydrogen atoms bonded to electronegative atoms and other electronegative atoms, not involving electron transfer. Thus, the nature of ionic bonding, based on electron transfer, makes it the correct answer in this context.

3. What is the relationship between the mass of a substance and the number of moles?

- A. The mass is inversely proportional to the number of moles
- B. The mass is independent of the number of moles
- C. The mass is directly proportional to the number of moles, as described by the equation: mass = moles \times molar mass**
- D. The mass is always equal to the number of moles

The correct answer highlights a fundamental relationship in chemistry that connects mass to the number of moles of a substance through the concept of molar mass. The equation $\text{mass} = \text{moles} \times \text{molar mass}$ effectively shows that the mass of a substance is directly proportional to the number of moles when the molar mass remains constant. This means that if you increase the number of moles of a substance, its mass also increases proportionally, assuming the molar mass does not change. The direct relationship is critical because it allows chemists to convert between mass and the number of moles using the molar mass, which is a specific value for each substance indicating how many grams correspond to one mole. This relationship is fundamental in stoichiometric calculations, enabling the prediction of amounts of reactants or products in chemical reactions based on mole ratios. Understanding this relationship is vital in chemistry, as it forms the basis for various calculations involving chemical substances, showing how mass measurement directly relates to the number of moles present in a sample.

4. What role does molar mass play in determining the mass of a substance?

- A. It modifies the number of protons in an atom
- B. It affects the volume of a gas under pressure
- C. It is used to calculate mass when multiplied by the number of moles**
- D. It has no effect on the mass of a substance

Molar mass is crucial in chemistry as it serves as a conversion factor used to relate the number of moles of a substance to its mass. Molar mass is defined as the mass of one mole of a substance, usually expressed in grams per mole (g/mol). When you know the molar mass of a substance, you can determine the mass by multiplying the number of moles of that substance by its molar mass. This relationship is foundational in stoichiometry, allowing chemists to perform calculations involving the quantities of reactants and products in chemical reactions effectively. Understanding how to use molar mass in this way enables students to easily shift between moles and mass, which is critical for quantitative analysis in chemistry. Therefore, this answer accurately reflects the role of molar mass in determining the mass of a substance.

5. What describes the attraction between two neighboring positive ions for the delocalized electrons between them?

- A. Hydrogen bond**
- B. Metallic bond**
- C. Ionic bond**
- D. Covalent bond**

The attraction between two neighboring positive ions for the delocalized electrons between them is best described as a metallic bond. In a metallic bond, metal atoms release some of their electrons to form a 'sea of electrons' that are free to move throughout the structure. This delocalization of electrons allows for attractive forces between the positively charged metal ions and the negatively charged electron cloud, providing strength and stability to the metallic lattice. The characteristics of metallic bonding account for properties such as electrical conductivity, malleability, and ductility found in metals. The mobility of these delocalized electrons is what enables metals to conduct electricity and heat effectively. In contrast, hydrogen bonds involve attractions between polar molecules that contain hydrogen and are not related to the interaction of positive ions with delocalized electrons. An ionic bond refers to the electrostatic attraction between oppositely charged ions, typically formed between metals and non-metals, which does not involve delocalized electrons but rather localized charge interactions. A covalent bond involves the sharing of electrons between two non-metal atoms and does not describe the behavior of ions in a metallic structure. Thus, the best description of the attraction in this context is indeed a metallic bond.

6. When measuring a quantity, what indicates that data is precise?

- A. The results are very close to the actual value**
- B. The results vary widely from the average**
- C. The results cluster closely around a central value**
- D. The results consistently show high or low values**

Data is considered precise when the measurements or results cluster closely around a central value, indicating a high degree of repeatability and consistency in the measurements taken. Precision refers to the degree to which repeated measurements under unchanged conditions show the same results. When values are closely grouped together, it suggests that the measurement process is stable and reliable, allowing for small variations due to systematic errors or random fluctuations. This clustering demonstrates that the methodology used is effective in yielding consistent results, which is a crucial aspect of data precision. In contrast, when results are widely varying or spread out from a central value, as indicated in the incorrect options, it suggests a lack of precision. Measures that are either very close to the actual value or consistently high or low do not necessarily reflect precision; these factors primarily relate to accuracy rather than precision. Thus, option C effectively captures the essence of what it means for data to be precise.

7. In an experiment, what does it mean if measurements are accurate but not precise?

- A. They are close to the true value but vary widely**
- B. They are consistently close to each other**
- C. They have a small range of values**
- D. They lead to the same conclusion every time**

The scenario described indicates that the measurements obtained are accurate but lack precision. Accuracy refers to how close the measured values are to the true or accepted value, while precision indicates the consistency and reproducibility of the measurements. When measurements are close to the true value, but vary widely, this suggests that there is accuracy in the data obtained. However, because the values show a wide range, this leads to a lack of precision. In other words, the results do not consistently cluster around a particular value, resulting in a large spread between the measurements. In contrast, other options relate to aspects of precision rather than accuracy. Consistently close measurements would indicate precision and not necessarily accuracy. A small range of values also implies that the measurements are tightly grouped, which indicates a high degree of precision. Finally, consistently leading to the same conclusion points towards precision as well, since it implies that the measurements yield similar results repeatedly. Therefore, the correct choice accurately describes the situation where measurements are accurate but not precise.

8. What are the electrons in the highest energy level of an atom called?

- A. Core electrons**
- B. Valence electrons**
- C. Protons**
- D. Inner electrons**

The electrons in the highest energy level of an atom are referred to as valence electrons. These electrons are critical because they are involved in chemical bonding and reactions. They govern how an atom interacts with others and determine the atom's reactivity and the types of bonds it can form. Valence electrons are those in the outermost shell of an atom, and their configuration varies as you move through the periodic table, influencing the properties of elements. For instance, elements with similar valence electron counts often exhibit similar chemical behaviors, leading to the categorization of elements into groups and periods. Core electrons, on the other hand, are the electrons that are not involved in bonding and are found in the inner shells of the atom. Protons are positively charged particles found in the nucleus of an atom. Inner electrons, similar to core electrons, are found closer to the nucleus and do not participate in chemical bonding. Understanding the role of valence electrons is essential for grasping concepts such as molecular formation, ionic and covalent bonding, and the overall behavior of elements in various chemical contexts.

9. What does molar mass indicate?

- A. The volume of one mole of a gas
- B. The mass of one mole of a substance**
- C. The number of moles in a solution
- D. The density of a solid

The correct option accurately reflects that molar mass is defined as the mass of one mole of a substance, measured in grams per mole (g/mol). This concept is central to stoichiometry in chemistry, where molar mass allows chemists to convert between the mass of a substance and the number of moles present. Knowing the molar mass is essential for calculations involving chemical reactions, where substances react in fixed proportions based on their mole ratios. For instance, if you have the molar mass of water (approximately 18 g/mol), this means that one mole of water has a mass of 18 grams. This relationship enables chemists to accurately measure and combine reactants in reactions, ensuring successful processes in both laboratory and industrial settings. The other choices refer to different concepts: the volume of one mole of a gas pertains to the ideal gas law under standard conditions, the number of moles in a solution relates to the molarity and concentration of a substance, and density is a property of matter that relates mass and volume but does not encompass the concept of moles directly. Thus, this choice captures the definition of molar mass precisely and its application in chemical calculations.

10. Which statement best describes a Lewis acid?

- A. An electron pair donor
- B. An electron pair acceptor**
- C. A compound that donates protons
- D. A substance that increases the concentration of hydroxide ions

A Lewis acid is best described as an electron pair acceptor. This definition stems from the Lewis theory of acids and bases, which was proposed by Gilbert Lewis. According to this theory, a Lewis acid is any species that can accept a pair of electrons to form a covalent bond. This is a broader definition compared to traditional acid-base theories that focus on proton transfer. For example, metal ions such as Fe^{3+} and Al^{3+} can act as Lewis acids because they have vacant orbitals and can accept electron pairs from electron-donating species, known as Lewis bases. This electron-accepting behavior is fundamental in many chemical reactions, particularly in organic and coordination chemistry. The other choices describe different concepts: an electron pair donor characterizes Lewis bases, while proton donors relate to Brønsted acids, and substances increasing hydroxide ion concentration are connected to bases, not acids. Thus, the accurate understanding of a Lewis acid's role as an electron pair acceptor is essential in comprehending its behavior in various chemical contexts.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ibchemistrysl.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE