

IB Biology Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What defines a population in biological terms?**
 - A. A group of diverse species in a region**
 - B. A single individual within a species**
 - C. A group of individuals of the same species in a specific area**
 - D. The total number of organisms in an ecosystem**

- 2. What is recombination in the context of genetics?**
 - A. The separation of alleles during gamete formation**
 - B. The exchange of DNA between sister chromatids**
 - C. The formation of a chromosome with a new combination of alleles**
 - D. The process of mutation leading to new genes**

- 3. Which of the following does not represent a type of reproductive isolation?**
 - A. Temporal**
 - B. Behavioral**
 - C. Geographic**
 - D. Physical**

- 4. What is the primary role of chlorophyll in photosynthesis?**
 - A. To absorb nutrients from the soil**
 - B. To absorb light energy to drive photosynthesis**
 - C. To produce oxygen as a byproduct**
 - D. To regulate water loss in leaves**

- 5. Why is water considered essential for biological systems?**
 - A. It regulates pH levels in organisms**
 - B. It serves only as a solvent**
 - C. It participates in biochemical reactions**
 - D. It is an energy source for cellular activities**

6. According to the Davson-Danielli model, what structures were thought to be adjacent to the phospholipid bilayer?

- A. Integral proteins only**
- B. Layers of carbohydrates**
- C. Layers of proteins on both sides**
- D. Only peripheral proteins**

7. What class of compounds includes enzymes and antibodies?

- A. Carbohydrates**
- B. Lipids**
- C. Nucleic acids**
- D. Proteins**

8. What defines autotrophs in an ecosystem?

- A. Organisms that depend on others for their nutrition**
- B. Organisms that obtain organic nutrients from dead matter**
- C. Organisms that obtain inorganic nutrients from the abiotic environment**
- D. Organisms that consume other living organisms**

9. In the context of ecology, why is competition considered a critical interaction?

- A. It fosters cooperation among species**
- B. It affects population dynamics and resource allocation**
- C. It has no significant impact on ecology**
- D. It leads to extinction exchanges**

10. What are consumers in ecological terms?

- A. Organisms that produce their own food**
- B. Organisms that obtain energy from sunlight**
- C. Heterotrophs that feed on living organisms by ingestion**
- D. Organisms that break down dead materials**

Answers

SAMPLE

1. C
2. C
3. D
4. B
5. C
6. C
7. D
8. C
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. What defines a population in biological terms?

- A. A group of diverse species in a region
- B. A single individual within a species
- C. A group of individuals of the same species in a specific area**
- D. The total number of organisms in an ecosystem

A population in biological terms is defined as a group of individuals of the same species that live in a specific area. This definition focuses on the shared characteristics of members of that group, including genetic similarity and the potential for interbreeding. Members of a population interact with one another, compete for resources, and form a breeding unit, which distinguishes them from individuals of different species or from different populations. The concept of a population is crucial in studies of ecology and evolutionary biology, as it addresses dynamics such as population size, density, distribution, and genetic variation, which directly affect survival and reproduction. Understanding a population helps biologists assess how species interact with their environment and the factors that influence their growth and decline.

2. What is recombination in the context of genetics?

- A. The separation of alleles during gamete formation
- B. The exchange of DNA between sister chromatids
- C. The formation of a chromosome with a new combination of alleles**
- D. The process of mutation leading to new genes

Recombination in genetics refers to the process where genetic material is exchanged between homologous chromosomes, resulting in the formation of new combinations of alleles. This occurs typically during meiosis, specifically in prophase I, when homologous chromosomes pair up and may exchange segments of their DNA through a process called crossing over. When recombination takes place, it contributes to genetic diversity in the offspring by ensuring that combinations of alleles are shuffled as they are passed down from parents to offspring. This is crucial for evolution and adaptation, as it enhances variability within a population. The other options address related concepts but do not capture the complete essence of recombination as defined in genetics. While the separation of alleles during gamete formation refers to the law of segregation, it does not specifically involve the exchange of genetic material between chromosomes. The exchange of DNA between sister chromatids pertains more to a different process that occurs during DNA replication rather than recombination. Mutation, although it can lead to new genetic variations, is a distinct process that alters the DNA sequence itself rather than exchanging segments between existing DNA strands.

3. Which of the following does not represent a type of reproductive isolation?

- A. Temporal**
- B. Behavioral**
- C. Geographic**
- D. Physical**

Reproductive isolation is a critical concept in evolutionary biology, referring to mechanisms that prevent different species or populations from interbreeding and producing viable offspring. Each of the first three forms of isolation - temporal, behavioral, and geographic - plays a significant role in maintaining species boundaries. Temporal isolation occurs when two species breed at different times of the day, season, or years, thus preventing mating opportunities. Behavioral isolation involves differences in mating rituals or behaviors that prevent species from recognizing each other as potential mates. Geographic isolation occurs when physical barriers such as mountains, rivers, or distances between populations prevent them from coming into contact and interbreeding. Physical isolation, on the other hand, is not a formal term used in the context of reproductive isolation. While physical barriers can contribute to geographic isolation, they do not encompass the biological or behavioral mechanisms that specifically lead to reproductive barriers. Therefore, it does not represent a distinct type of reproductive isolation in the same way that the other options do. Thus, the choice that does not accurately describe a type of reproductive isolation is physical isolation.

4. What is the primary role of chlorophyll in photosynthesis?

- A. To absorb nutrients from the soil**
- B. To absorb light energy to drive photosynthesis**
- C. To produce oxygen as a byproduct**
- D. To regulate water loss in leaves**

The primary role of chlorophyll in photosynthesis is to absorb light energy, which is essential for the process. Chlorophyll is a pigment found in the chloroplasts of plant cells, and it primarily absorbs light in the blue and red wavelengths, while reflecting green light, which is why plants appear green. This absorbed light energy is then converted into chemical energy during the light-dependent reactions of photosynthesis. In these reactions, the energy captured by chlorophyll is used to split water molecules, releasing oxygen as a byproduct and generating ATP and NADPH, which are energy carriers for the subsequent stages of photosynthesis. Therefore, without chlorophyll and its ability to capture light energy, the entire process of photosynthesis, which fuels plant growth and produces organic compounds and oxygen, could not occur effectively.

5. Why is water considered essential for biological systems?

- A. It regulates pH levels in organisms
- B. It serves only as a solvent
- C. It participates in biochemical reactions**
- D. It is an energy source for cellular activities

Water is considered essential for biological systems primarily because it participates in biochemical reactions. Its unique properties allow it to serve multiple critical roles within living organisms. One of the most significant functions of water is its involvement in hydrolysis and condensation reactions, which are fundamental for metabolism. For instance, during digestion, water molecules are required to break down macromolecules like carbohydrates, proteins, and lipids into their monomer components. This process enables the body to utilize nutrients effectively. Additionally, water is crucial in photosynthesis, where it contributes to the production of glucose and oxygen in plants. Moreover, water's role as a solvent allows for the dissolution of many ionic and polar substances, facilitating cellular functions. However, this function is only part of water's importance; its participation in chemical reactions is paramount for maintaining metabolic processes. While regulating pH levels and being an energy source have their importance, they do not capture the comprehensive significance of water in biological systems the way that its role in biochemical reactions does. Water's ability to participate actively in these processes emphasizes its necessity for life.

6. According to the Davson-Danielli model, what structures were thought to be adjacent to the phospholipid bilayer?

- A. Integral proteins only
- B. Layers of carbohydrates
- C. Layers of proteins on both sides**
- D. Only peripheral proteins

The Davson-Danielli model proposes that the structure of the plasma membrane consists of a phospholipid bilayer sandwiched between layers of proteins. According to this model, the hydrophilic heads of the phospholipids align with the outer layers of protein, creating distinct outer and inner surfaces of the membrane. The notion that there are layers of proteins on both sides of the phospholipid bilayer suggests that these proteins serve various roles, such as acting as structural components, mediating transport, and serving as receptors. This idea of a membrane's structure was foundational in the early understanding of cell membranes and highlights the importance of proteins in membrane functionality. In the context of the other options, while integral proteins do play a critical role in membrane structure, they do not represent the complete picture according to this model. Carbohydrates are related to membrane structure but are generally associated with proteins or lipids rather than forming layers by themselves. Peripheral proteins are indeed relevant but not sufficient to encompass the idea of layering as described in the Davson-Danielli model. Hence, the correct understanding of the model emphasizes the presence of protein layers surrounding the phospholipid bilayer.

7. What class of compounds includes enzymes and antibodies?

- A. Carbohydrates**
- B. Lipids**
- C. Nucleic acids**
- D. Proteins**

The correct answer is proteins, which are a class of compounds that play a crucial role in biological processes. Enzymes and antibodies are both types of proteins that have specific functions within the body. Enzymes are biological catalysts that facilitate chemical reactions by lowering the activation energy, thus speeding up the process without being consumed in the reaction. They are essential for various metabolic pathways, allowing organisms to carry out necessary biochemical transformations efficiently. Antibodies, on the other hand, are specialized proteins produced by the immune system. They recognize and bind to specific antigens, such as bacteria or viruses, helping to neutralize or eliminate them from the body. This specialized function is pivotal in protecting the body from infections and diseases. Overall, proteins are fundamental macromolecules that perform a diverse array of biological functions, making them integral to life.

8. What defines autotrophs in an ecosystem?

- A. Organisms that depend on others for their nutrition**
- B. Organisms that obtain organic nutrients from dead matter**
- C. Organisms that obtain inorganic nutrients from the abiotic environment**
- D. Organisms that consume other living organisms**

Autotrophs are primarily defined by their ability to synthesize their own organic compounds using inorganic materials and an energy source. This process typically occurs through photosynthesis in plants, where they convert carbon dioxide and water into glucose using sunlight. In aquatic ecosystems, some autotrophs, such as certain bacteria, may use chemosynthesis, deriving energy from chemical reactions rather than sunlight. By obtaining inorganic nutrients from the abiotic environment—like minerals, water, and carbon dioxide—autotrophs play a crucial role in the food web as primary producers. This ability allows them to form the base of the ecosystem's energy pyramid, supporting a variety of consumer organisms that depend on them for energy. Therefore, the defining feature of autotrophs is their capacity to utilize inorganic compounds to create organic matter, which is vital for ecosystem functioning.

9. In the context of ecology, why is competition considered a critical interaction?

- A. It fosters cooperation among species**
- B. It affects population dynamics and resource allocation**
- C. It has no significant impact on ecology**
- D. It leads to extinction exchanges**

Competition is a critical interaction in ecology because it significantly influences population dynamics and resource allocation within an ecosystem. When organisms vie for limited resources such as food, water, territory, or mates, competition can lead to various ecological outcomes. For instance, it can impact the size and growth rates of populations, as individuals that are more successful in obtaining resources will generally fare better in terms of survival and reproduction. This can lead to selective pressures that shape the evolutionary paths of species over time. Furthermore, competition can lead to niche differentiation, where species adapt to utilize different resources or habitats in order to coexist, thus promoting biodiversity. Understanding competition is essential for studying community structure, species coexistence, and overall ecosystem health, making it a fundamental concept in ecological research and conservation efforts.

10. What are consumers in ecological terms?

- A. Organisms that produce their own food**
- B. Organisms that obtain energy from sunlight**
- C. Heterotrophs that feed on living organisms by ingestion**
- D. Organisms that break down dead materials**

Consumers in ecological terms are defined as heterotrophs that obtain their energy by feeding on other living organisms through the process of ingestion. This classification includes a variety of organisms such as herbivores, carnivores, and omnivores, which derive their nourishment by consuming plants, animals, or both. The term "heterotroph" specifically refers to organisms that cannot synthesize their own food and therefore rely on others for their energy needs. This distinguishes them from producers, which can make their own food through photosynthesis or chemosynthesis, and decomposers, which play a different ecological role by breaking down dead organic material. The consumption process that consumers engage in is fundamental to energy transfer within food webs and ecosystems, making them a crucial component of ecological dynamics.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ibbiology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE