

HVAC Journeyman Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What requirement must be met for a floor furnace installation according to code regulations?**
 - A. It shall have a permanent power source**
 - B. It must be installed near a window**
 - C. It shall be accessible by a foundation opening**
 - D. It must be certified by a third-party inspector**
- 2. What construction regulation standard is relevant for maintaining duct integrity over vertical distances?**
 - A. Mechanical Code**
 - B. Building Code**
 - C. Energy Code**
 - D. Fire Code**
- 3. When installing clothes dryer exhaust ducts, what is one requirement for the duct length?**
 - A. Must not exceed 10 feet**
 - B. Must not include any elbows**
 - C. Must comply with the manufacturers' installation instructions**
 - D. Must be insulated**
- 4. Exhaust fans should provide access for cleaning and inspection within a distance of?**
 - A. 3 feet**
 - B. 5 feet**
 - C. 6 feet**
 - D. 8 feet**
- 5. In terms of requirements for height, which option is compliant for a roof access?**
 - A. 14 feet**
 - B. 15 feet**
 - C. 16 feet**
 - D. 20 feet**

6. For air-conditioning equipment, how should the means of electrical supply interruption be designed?

- A. Visible and accessible**
- B. Visible but not accessible**
- C. Accessible but not visible**
- D. Neither visible nor accessible**

7. What is the minimum requirement for metal ducts installed in or under a concrete slab?

- A. Insulated**
- B. Protected from damage**
- C. Encased in at least 2 inches of sand**
- D. Encased in at least 2 inches of concrete**

8. How should relief valves in heating systems be installed according to safety standards?

- A. Piped with a downward slope**
- B. Piped to a safe place where discharge can be monitored**
- C. Piped to discharge in a visible area**
- D. Piped directly to the outside environment**

9. What should be used to fasten joints in vent connectors?

- A. duct tape**
- B. solder joints**
- C. welded joints**
- D. sheet metal screws**

10. What is the minimum distance from the ground to any metal duct?

- A. 2 inches**
- B. 4 inches**
- C. 6 inches**
- D. 12 inches**

Answers

SAMPLE

1. C
2. A
3. C
4. B
5. B
6. A
7. C
8. B
9. D
10. B

SAMPLE

Explanations

SAMPLE

1. What requirement must be met for a floor furnace installation according to code regulations?

- A. It shall have a permanent power source**
- B. It must be installed near a window**
- C. It shall be accessible by a foundation opening**
- D. It must be certified by a third-party inspector**

For a floor furnace installation to comply with code regulations, it must be accessible by a foundation opening. This requirement is crucial to ensure that the furnace can be properly maintained and serviced. Accessibility is important not only for routine maintenance, which can include cleaning and inspections, but also for safety reasons, as any required repairs should be able to be conducted without significant modification to the structure or putting anyone at risk. Access via a foundation opening allows technicians to reach components of the floor furnace without excessive difficulty or risk of damaging the surrounding areas. It is an essential design feature that promotes safe and efficient serviceability. While factors like a permanent power source and certification by a third-party inspector are important for the overall operation and safety of HVAC systems, they do not specifically address the installation criteria for physical access to a floor furnace. Additionally, proximity to windows is not a standard requirement in the installation of floor furnaces, making the accessibility factor the most relevant requirement in this context.

2. What construction regulation standard is relevant for maintaining duct integrity over vertical distances?

- A. Mechanical Code**
- B. Building Code**
- C. Energy Code**
- D. Fire Code**

The Mechanical Code is relevant for maintaining duct integrity over vertical distances because it specifically addresses the design, installation, and maintenance standards for mechanical systems, including ductwork. This code ensures that ducts can handle the gravitational loads and environmental conditions they encounter, particularly when run vertically. Proper duct integrity is essential to prevent issues like air leakage, contamination, and reduced efficiency in HVAC systems. The Mechanical Code also sets forth requirements for the materials used and the construction methods to ensure that the ductwork remains intact and functions properly in various orientations, which is critical in applications where ducts must traverse multiple floors or levels within a building. Other codes such as the Building Code, Energy Code, and Fire Code have their own distinct focuses, such as general building safety, energy efficiency requirements, and fire prevention measures, respectively, but they do not provide the specific guidelines necessary for duct integrity in a mechanical context.

3. When installing clothes dryer exhaust ducts, what is one requirement for the duct length?

- A. Must not exceed 10 feet**
- B. Must not include any elbows**
- C. Must comply with the manufacturers' installation instructions**
- D. Must be insulated**

The requirement regarding the duct length for clothes dryer exhaust ducts emphasizes the importance of adhering to the manufacturers' installation instructions. Each manufacturer designs their dryers with specific outlet and duct specifications to ensure optimal performance and safety. These instructions account for the size, material, and configuration of the ducting, which can affect the dryer's efficiency and the risk of fire hazards. Therefore, following the manufacturer's guidelines about duct length not only ensures compliance with safety standards but also helps in maintaining the effectiveness of the drying process. While various standards and codes may suggest optimal lengths and configurations for dryer ducts, the primary authority comes from the manufacturer. This means that the specific requirements laid out in the installation manual should take precedence over general guidelines. This approach also recognizes the variations in design and technology among different models and brands.

4. Exhaust fans should provide access for cleaning and inspection within a distance of?

- A. 3 feet**
- B. 5 feet**
- C. 6 feet**
- D. 8 feet**

Exhaust fans are critical components in HVAC systems, primarily for maintaining indoor air quality by expelling stale or contaminated air. It is essential that these fans are designed in a way that allows for adequate access for maintenance tasks such as cleaning and inspection. Providing access within a distance of 5 feet ensures that technicians can safely and efficiently reach the fan for routine checks and cleaning procedures, thereby promoting the fan's longevity and optimal performance. Maintenance access to exhaust fans is vital because cleanliness directly affects the efficiency of the fan in expelling air and may also influence energy consumption. Additionally, neglecting regular inspections can lead to reduced airflow and potential breakdowns, which may result in costly repairs or downtime. Therefore, the 5-foot requirement balances ease of access with practical working considerations within most buildings.

5. In terms of requirements for height, which option is compliant for a roof access?

- A. 14 feet**
- B. 15 feet**
- C. 16 feet**
- D. 20 feet**

The requirement for roof access height typically correlates with safety and accessibility standards set by various building codes and regulations. In this context, a height of 15 feet is often recognized as compliant for roof access. This standard is established to ensure that workers can safely perform maintenance or inspections without excessive risk. Heights greater than 15 feet may require additional safety measures, such as guardrails or safety systems, to prevent falls and ensure that workers have the necessary training to access these areas safely. Therefore, the 15-foot requirement strikes a balance between being accessible and maintaining a focus on safety protocols for personnel working at elevated levels. This is part of why this particular height is seen as compliant in many jurisdictions. Other options, such as 14 feet, typically do not meet the threshold established for safe access, while heights like 16 feet and 20 feet often necessitate more stringent regulations regarding safety equipment and training, thus making the 15-foot option more practical within the standard compliance parameters.

6. For air-conditioning equipment, how should the means of electrical supply interruption be designed?

- A. Visible and accessible**
- B. Visible but not accessible**
- C. Accessible but not visible**
- D. Neither visible nor accessible**

The correct choice is that the means of electrical supply interruption for air-conditioning equipment should be designed to be visible and accessible. This design requirement is essential for safety and practicality. In the event of a malfunction or emergency, technicians, or even occupants, must have the ability to easily locate and disconnect power to the equipment to prevent electrical hazards, equipment damage, or personal injury. Having a means of electrical interruption that is visible ensures that it can be quickly identified during an emergency or maintenance situation. Accessibility ensures that anyone who needs to cut power to the equipment can do so safely and swiftly without needing to navigate obstacles or find hidden controls. These characteristics align with best practices in electrical safety and are often mandated by industry standards and local building codes. The other options do not promote safety and efficiency in the same way. If the interruption means is visible but not accessible, it would defeat the purpose of providing a quick and effective means to shut off power. Similarly, if it is accessible but not visible, it could lead to confusion and delays in emergencies. Lastly, having the means neither visible nor accessible could pose significant safety risks and would likely violate safety regulations. Thus, ensuring both visibility and accessibility is critical in the design of electrical supply interruptions for air-conditioning equipment.

7. What is the minimum requirement for metal ducts installed in or under a concrete slab?

- A. Insulated**
- B. Protected from damage**
- C. Encased in at least 2 inches of sand**
- D. Encased in at least 2 inches of concrete**

The minimum requirement for metal ducts installed in or under a concrete slab is that they must be encased in at least 2 inches of sand. This is to ensure that the metal ducts are protected from potential damage caused by the surrounding concrete and any shifting or settling that might occur over time. Sand provides a cushioning effect, preventing direct contact between the metal ducts and the concrete, which could lead to corrosion or physical damage to the ducts. Encasing ducts in sand also helps to maintain the integrity of the duct system, ensuring efficient operation without the risk of leaks or blockages due to constriction or impact from the concrete. While insulation and other protective measures are important for HVAC systems, in the context of installation under a concrete slab, proper protective encasement in sand meets the specific need for safeguarding ductwork in potentially vulnerable environments. This practice aligns with industry codes and standards to ensure the longevity and efficiency of the HVAC system.

8. How should relief valves in heating systems be installed according to safety standards?

- A. Piped with a downward slope**
- B. Piped to a safe place where discharge can be monitored**
- C. Piped to discharge in a visible area**
- D. Piped directly to the outside environment**

Relief valves in heating systems must be piped to a safe place where the discharged fluid can be monitored to ensure proper operation and safety. This standard is crucial because it allows for the observation of any discharge that may occur, indicating a need for maintenance or a potential system issue. When the fluid is safely directed to a monitored location, it minimizes the risk of accidents or damage from dangerous discharges, such as hot water or steam. Monitoring also provides an opportunity to detect potential malfunctions or failures in the system before they escalate into more serious problems. While piping the valve to a visible area or directly to the outside may seem beneficial, these options can lead to safety hazards if the discharge is not properly contained or monitored. Therefore, the correct approach aligns with safety standards emphasizing the importance of visibility and accessibility for monitoring purposes.

9. What should be used to fasten joints in vent connectors?

- A. duct tape
- B. solder joints
- C. welded joints
- D. sheet metal screws**

Using sheet metal screws to fasten joints in vent connectors is the recommended practice because these screws provide a strong and secure connection that can withstand the thermal expansion and contraction typically experienced in ventilation systems. Sheet metal screws are designed specifically for fastening metal components, offering improved durability and resistance to vibrations compared to other fastening methods. Other options, such as duct tape, may initially seem like a convenient solution, but it does not provide the necessary strength or longevity required for vent connectors, especially under varying temperature conditions. Solder joints and welded joints, while effective in other applications, are generally not used for vent connectors in HVAC systems due to the difficulty of creating a reliable seal in the presence of different materials and potential thermal movement. Therefore, the best and most reliable choice for ensuring secure and effective ventilation connections is indeed sheet metal screws.

10. What is the minimum distance from the ground to any metal duct?

- A. 2 inches
- B. 4 inches**
- C. 6 inches
- D. 12 inches

The minimum distance from the ground to any metal duct is important to ensure safety and proper airflow within HVAC systems. A measurement of 4 inches is commonly specified as the minimum distance. This spacing prevents potential damage to the ductwork from contact with debris or water on the ground, which can lead to deterioration of the metal or create unsanitary conditions. Moreover, maintaining this distance also facilitates easy access for inspection and maintenance, reducing the risk of blockages or other issues that could impact system performance. In contrast, distances that are too small may not offer adequate protection, while distances that are much larger do not provide any additional benefit and could be impractical in terms of installation requirements.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://hvacjourneyman.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE