

Huawei Certified ICT Associate - Artificial Intelligence (HCIA-AI) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which of the following is NOT a key component of an AI system?**
 - A. Data**
 - B. Algorithms**
 - C. Computing Power**
 - D. Machine Learning Framework**
- 2. The F1 value for evaluating classification models includes which of the following indicators?**
 - A. Accuracy, Recall**
 - B. Recall, Precision**
 - C. Precision, Validity**
 - D. Accuracy, Precision**
- 3. Which statement about a convolutional neural network is incorrect?**
 - A. A convolutional neural network can include convolutional layers, pooling layers, and fully-connected layers**
 - B. Common pooling layers include the max-pooling layer and average-pooling layer**
 - C. During image processing, image convolution is performed through window scanning**
 - D. A convolutional kernel cannot be used to extract global features of images**
- 4. Explain the term 'confidence interval' in machine learning predictions.**
 - A. A metric for measuring the accuracy of a single data point**
 - B. A defined range of values derived from a dataset, within which the true value is expected to fall with a certain probability**
 - C. A method to validate model performance across multiple datasets**
 - D. A statistical technique for feature selection**

5. Which statement about neural networks is incorrect?

- A. The neurons at the same layer of the feedforward neural network are not interconnected**
- B. The limitation of a single-layer perceptron is that it cannot resolve XOR problems**
- C. A feedforward neural network can be represented using a directed acyclic graph**
- D. As hidden layers of a neural network increase, the model classification capability gradually weakens**

6. Which of the following statements about on-device execution is incorrect?

- A. It encounters challenges such as memory wall and high interaction overhead.**
- B. MindSpore reduces synchronisation waiting time and maximises parallelism.**
- C. The training performance is the same as host-side image scheduling mode.**
- D. Model execution leads to improved accelerator usage.**

7. Why are ethical considerations crucial in AI?

- A. To promote technological advancement**
- B. To ensure accountability in AI usage**
- C. To avoid negative impacts such as bias**
- D. To enhance system efficiency**

8. What is data labeling?

- A. The process of annotating data with categories for unsupervised learning**
- B. The process of tagging data with labels to train supervised learning models**
- C. A technique for compressing large datasets for storage**
- D. The act of cleaning and formatting data for analysis**

9. What aspect of AI does permutation importance focus on?

- A. Evaluating the cost of training models**
- B. Determining feature relevance in statistical analysis**
- C. Assessing the accuracy of model predictions**
- D. Measuring the influence of individual features on model performance**

10. What does the term 'big data' refer to in the context of data analysis?

- A. Extremely small datasets that require minimal analysis**
- B. Extremely large datasets that may be analyzed computationally to reveal patterns, trends, and associations**
- C. Average-sized datasets that can be easily handled with traditional algorithms**
- D. Datasets that consist only of numerical data**

SAMPLE

Answers

SAMPLE

1. D
2. B
3. D
4. B
5. D
6. D
7. C
8. B
9. D
10. B

SAMPLE

Explanations

SAMPLE

1. Which of the following is NOT a key component of an AI system?

- A. Data**
- B. Algorithms**
- C. Computing Power**
- D. Machine Learning Framework**

An AI system fundamentally relies on several critical components to function effectively, with Data, Algorithms, and Computing Power being the primary pillars. Each of these components plays a vital role. Data serves as the foundation for AI, as it is the raw material that the system learns from. The quality and quantity of data can greatly influence the performance and accuracy of an AI model. Algorithms are essential in AI systems as they dictate how the data is processed and how the model learns patterns and makes decisions. They provide the methods for training, inference, and optimization of models. Computing Power is crucial as well, as sophisticated AI models, particularly those based on deep learning, require significant computational resources to process data efficiently and to run complex algorithms effectively. While a Machine Learning Framework can be very beneficial as it provides tools and libraries for developing AI models, it is not a fundamental component in the same way that Data, Algorithms, and Computing Power are. A framework is essentially a support structure that facilitates the use of the core components but is not indispensable for the existence of an AI system itself. Thus, it is correct to identify it as not being a key component of an AI system.

2. The F1 value for evaluating classification models includes which of the following indicators?

- A. Accuracy, Recall**
- B. Recall, Precision**
- C. Precision, Validity**
- D. Accuracy, Precision**

The F1 value is a metric that is particularly valuable in evaluating classification models, especially in scenarios where class distribution is imbalanced. It is defined as the harmonic mean of precision and recall, and it provides a single score that balances both concerns. Precision measures the proportion of true positive results in all positive predictions made by the model. Recall, on the other hand, indicates the proportion of actual positive instances that were correctly predicted by the model. The F1 score combines these two indicators to present a more comprehensive view of a model's performance, particularly where both false positives and false negatives are critical to consider. Therefore, the inclusion of recall and precision in the calculation of the F1 value is why this option is the correct choice, as it emphasizes the model's ability to identify positive cases accurately while minimizing the false positive rate.

3. Which statement about a convolutional neural network is incorrect?

- A. A convolutional neural network can include convolutional layers, pooling layers, and fully-connected layers
- B. Common pooling layers include the max-pooling layer and average-pooling layer
- C. During image processing, image convolution is performed through window scanning
- D. A convolutional kernel cannot be used to extract global features of images**

The statement that a convolutional kernel cannot be used to extract global features of images is indeed incorrect because convolutional kernels, or filters, are designed to extract features from images at various levels of hierarchy, including global patterns. Convolutional layers in a convolutional neural network (CNN) apply these kernels across the entire input image (or relevant portions through the concept of a sliding window), allowing the network to recognize broad representations and patterns in the data. While individual kernels are more effective at capturing localized features (like edges or textures), deeper layers of the network, which consist of a larger receptive field, can indeed capture more global features by combining the outputs from earlier layers. Thus, the notion that convolutional kernels cannot contribute to identifying global features is a misunderstanding of how feature extraction occurs in CNN architectures. In contrast, the other options accurately describe aspects of convolutional neural networks. They correctly identify the composition of these networks, the types of pooling layers available, and the operational mechanism of image convolution via window scanning.

4. Explain the term 'confidence interval' in machine learning predictions.

- A. A metric for measuring the accuracy of a single data point
- B. A defined range of values derived from a dataset, within which the true value is expected to fall with a certain probability**
- C. A method to validate model performance across multiple datasets
- D. A statistical technique for feature selection

The term 'confidence interval' in the context of machine learning predictions refers to a defined range of values derived from a dataset, suggesting where the true value of a parameter (such as a prediction) is expected to fall, with a certain probability. This statistical range provides insight into the uncertainty regarding the predictions made by a model. When a model makes a prediction, it can be uncertain due to various factors such as noise in the data, quality of the data, and inherent variability. The confidence interval quantifies this uncertainty, giving a better understanding of how reliable the prediction might be. For instance, if the prediction for a certain outcome has a confidence interval of [2, 4], it means that there is a certain level of confidence (often set at 95%) that the true outcome will lie within this range. This is vital for decision-making processes where understanding the reliability of predictions is critical. This concept is particularly important in domains such as medicine or finance, where making decisions based on predictions carries significant consequences. Using confidence intervals helps practitioners make more informed decisions by acknowledging the inherent uncertainty in their predictions.

5. Which statement about neural networks is incorrect?

- A. The neurons at the same layer of the feedforward neural network are not interconnected**
- B. The limitation of a single-layer perceptron is that it cannot resolve XOR problems**
- C. A feedforward neural network can be represented using a directed acyclic graph**
- D. As hidden layers of a neural network increase, the model classification capability gradually weakens**

The statement regarding neural networks that indicates as hidden layers of a neural network increase, the model classification capability gradually weakens is indeed incorrect. In fact, adding hidden layers to a neural network generally enhances its ability to model complex functions and capture intricate patterns in the data. This capability is often referred to as the model's expressiveness. A neural network with an appropriate number of hidden layers can progressively learn higher-level features and abstractions from the input data, allowing it to classify data more effectively, especially for complex tasks. While it is true that overly deep networks can lead to issues like overfitting, poor training, or vanishing gradients, the general consensus is that increased depth, up to a point, typically improves performance when managed correctly. The other statements are correct: neurons within the same layer of a feedforward neural network are indeed not interconnected; single-layer perceptrons cannot resolve XOR problems due to their linearity, which limits them to linearly separable data; and a feedforward neural network can be aptly represented as a directed acyclic graph that illustrates the flow of information through layers in a one-way manner.

6. Which of the following statements about on-device execution is incorrect?

- A. A. It encounters challenges such as memory wall and high interaction overhead.**
- B. B. MindSpore reduces synchronisation waiting time and maximises parallelism.**
- C. C. The training performance is the same as host-side image scheduling mode.**
- D. D. Model execution leads to improved accelerator usage.**

On-device execution refers to running models directly on hardware devices, such as smartphones or edge devices, instead of relying on a remote server. This approach offers advantages, such as reduced latency and increased privacy. However, it also comes with certain challenges. The statement regarding the improvement in accelerator usage from model execution is misleading. In many cases, on-device execution may not fully maximize the potential of hardware accelerators due to limitations in device resources, varying levels of computational capability, and the specific nature of the models being deployed. While on-device execution can lead to better responsiveness and lower latency, it does not inherently guarantee improved usage of accelerators compared to scenarios where models are executed on more powerful host systems. This nuanced performance trade-off is an important consideration in the context of AI deployment. The statements about challenges like the memory wall and high interaction overhead, along with the benefits of MindSpore in enhancing parallelism and reducing synchronization latency, accurately reflect some of the technical issues and optimizations related to on-device AI execution. Thus, the assertion about improved accelerator usage does not align with the complexities and limitations faced in actual on-device execution contexts.

7. Why are ethical considerations crucial in AI?

- A. To promote technological advancement**
- B. To ensure accountability in AI usage**
- C. To avoid negative impacts such as bias**
- D. To enhance system efficiency**

Ethical considerations in AI are essential primarily to mitigate negative impacts, such as bias, that can arise during the development and deployment of AI systems. When AI systems are trained on data that may contain biases, these biases can be perpetuated or even amplified, leading to unfair treatment of certain individuals or groups. Ensuring that AI systems are designed and implemented ethically helps identify and address such biases, leading to more equitable outcomes. Incorporating ethics into AI development encourages organizations to scrutinize the data used in training algorithms, ensuring that diverse and representative datasets are employed. This consideration is vital because biased AI systems can result in significant social consequences, affecting areas such as hiring processes, law enforcement, lending, and healthcare. While promoting technological advancement, ensuring accountability, and enhancing system efficiency are important aspects of AI, they do not directly address the fundamental need to prevent harm caused by biases. Ethical considerations that focus on avoiding negative impacts are particularly crucial in fostering trust and acceptance of AI technologies in society.

8. What is data labeling?

- A. The process of annotating data with categories for unsupervised learning**
- B. The process of tagging data with labels to train supervised learning models**
- C. A technique for compressing large datasets for storage**
- D. The act of cleaning and formatting data for analysis**

Data labeling is essential in the context of supervised learning, where algorithms require labeled data to learn from. The process involves assigning tags or labels to data points, such as images, text, or audio, which helps the model understand what each piece of data represents. This allows the model to learn patterns and make predictions based on new, unseen data. For instance, in a machine learning task involving image classification, each image might be labeled as "cat," "dog," or "bird." By providing these labels during the training phase, the algorithm can learn to differentiate between the categories and make accurate predictions when presented with new images. The other options describe different processes related to data handling but do not specifically address the concept of assigning labels for the purpose of supervised model training. Annotation for unsupervised learning does not utilize labeled data, compression techniques focus on storage efficiency rather than labeling for learning purposes, and data cleaning or formatting pertains to preparing data for analysis without necessarily associating labels to it.

9. What aspect of AI does permutation importance focus on?

- A. Evaluating the cost of training models
- B. Determining feature relevance in statistical analysis
- C. Assessing the accuracy of model predictions
- D. Measuring the influence of individual features on model performance**

Permutation importance is a technique that specifically measures the influence of individual features on model performance. It works by assessing how the model's predictions change when the values of a particular feature are shuffled or permuted. By evaluating the impact of this alteration on the model's overall performance, it allows us to determine how important that feature is in contributing to the predictions made by the model. This method provides an intuitive and interpretable approach to feature importance, highlighting which variables are most critical for making predictions. In practice, a feature that shows a significant drop in the model's accuracy when permuted is considered to be highly important, while those that do not affect accuracy much are regarded as less influential. This focus on how individual features affect model performance differentiates permutation importance from the other options, which address aspects like cost of training models (which is more about the resources involved), relevance in statistical analysis (which is broader and not necessarily tied to prediction models), and general model accuracy assessment (which does not isolate feature impact).

10. What does the term 'big data' refer to in the context of data analysis?

- A. Extremely small datasets that require minimal analysis
- B. Extremely large datasets that may be analyzed computationally to reveal patterns, trends, and associations**
- C. Average-sized datasets that can be easily handled with traditional algorithms
- D. Datasets that consist only of numerical data

The term 'big data' in the context of data analysis refers to extremely large datasets that can be analyzed computationally to uncover patterns, trends, and associations. This definition captures the essence of what big data entails: not just the volume of data but also its potential for extraction of valuable insights. As organizations gather increasingly vast and diverse data sets, traditional data processing applications are often inadequate to handle them. Big data typically involves complexities such as variety, velocity, and volume, and it requires advanced analytical techniques and tools to handle and interpret these large quantities of information effectively. By leveraging big data analytics, companies can make informed decisions, improve operational efficiencies, and generate better business outcomes based on the insights derived from such extensive data collections. In contrast, the other options describe scenarios that do not align with the fundamental concept of big data. While extremely small datasets or average-sized datasets can be analyzed, they do not fit into the definition of big data. Additionally, the notion that big data consists only of numerical data is misleading, as big data includes a wide array of formats such as text, video, and audio among others. This broad versatility is a significant characteristic of big data that allows for deeper insights across various domains.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://huaweicertifiedictassociate-ai.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE