

HOSA Behavioral Health Assessment Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

- 1. What is the primary function of the cerebral cortex?**
 - A. Support and nourish neurons**
 - B. Control voluntary movement**
 - C. Process and control information**
 - D. Receive sensory input for touch**

- 2. Which disorder is marked by an emotional response to a traumatic event?**
 - A. Obsessive-compulsive disorder**
 - B. Post-traumatic stress disorder**
 - C. Attention Deficit Hyperactivity Disorder**
 - D. Somatoform disorders**

- 3. Are most adolescents who suffer from depression treated?**
 - A. Yes**
 - B. No**
 - C. Only those in urban areas**
 - D. Only those over 18**

- 4. What can significantly decrease the risk and severity of head injuries among all-terrain vehicle (ATV) riders?**
 - A. Wearing protective clothing**
 - B. Riding at lower speeds**
 - C. Helmets**
 - D. Using safety goggles**

- 5. The function of the thalamus includes the processing of which type of input?**
 - A. Motor control**
 - B. Sensory input**
 - C. Emotional responses**
 - D. Reward system**

6. Where is the Limbic system primarily located?

- A. Inside the brainstem**
- B. Below the cerebral hemispheres**
- C. In the cerebellum**
- D. At the base of the skull**

7. D2 receptors are primarily found in which part of the brain?

- A. Cerebral cortex**
- B. Limbic system**
- C. Cerebellum**
- D. Brainstem**

8. What is the estimated annual number of deaths caused by excessive alcohol consumption?

- A. 50,000**
- B. 88,000**
- C. 100,000**
- D. 120,000**

9. Which two parts of the limbic system react together to trigger emotions related to memory?

- A. Frontal lobe and insula**
- B. Thalamus and hypothalamus**
- C. Hippocampus and amygdala**
- D. Cerebellum and brain stem**

10. What is a primary function of the medulla oblongata?

- A. Regulation of body temperature**
- B. Control of voluntary muscle movements**
- C. Responsible for homeostasis, breathing, heart rate, and blood pressure**
- D. Processing of sensory information**

Answers

SAMPLE

1. C
2. B
3. B
4. C
5. B
6. B
7. B
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. What is the primary function of the cerebral cortex?

- A. Support and nourish neurons**
- B. Control voluntary movement**
- C. Process and control information**
- D. Receive sensory input for touch**

The primary function of the cerebral cortex is to process and control information, which encompasses a wide range of cognitive functions, including perception, reasoning, decision-making, and problem-solving. The cerebral cortex is involved in higher-order brain functions that are essential for complex behaviors and interactions with the environment. It integrates sensory information from various sources, enabling individuals to respond appropriately to stimuli. Understanding the cerebral cortex's role in processing and controlling information highlights the significance of this area in relation to various facets of human experience, such as language, learning, and memory. While other options refer to aspects of brain functions—supporting neurons or controlling movement and sensory input—they do not encompass the broader and more intricate role of the cerebral cortex in overall information processing.

2. Which disorder is marked by an emotional response to a traumatic event?

- A. Obsessive-compulsive disorder**
- B. Post-traumatic stress disorder**
- C. Attention Deficit Hyperactivity Disorder**
- D. Somatoform disorders**

Post-traumatic stress disorder (PTSD) is characterized by an emotional response to a traumatic event, which can encompass experiences such as severe accidents, natural disasters, combat, or personal assaults. Individuals with PTSD may experience flashbacks, nightmares, severe anxiety, and uncontrollable thoughts about the event. These symptoms result from the distress associated with reliving or recalling the traumatic experience, leading to significant emotional and psychological stress. This disorder specifically highlights the impact of trauma on an individual's mental health, with symptoms often appearing shortly after the event or perhaps even months or years later. Unlike the other disorders listed, which have different underlying causes and symptom patterns, PTSD is uniquely tied to a specific traumatic experience and its emotional aftermath.

3. Are most adolescents who suffer from depression treated?

- A. Yes**
- B. No**
- C. Only those in urban areas**
- D. Only those over 18**

The assertion that most adolescents who suffer from depression are not treated is based on data highlighting various barriers to mental health care. Many adolescents facing depression may not receive the necessary treatment due to factors such as stigma, lack of access to mental health professionals, or unawareness of the resources available to them. Additionally, sometimes families may not recognize the signs of depression, which can delay or prevent adolescents from seeking help. Many adolescents also feel hesitant to reach out for help due to concerns about being judged, or they might not feel supported in doing so. This creates a significant gap between those who need assistance and those who actually receive it. Studies indicate that while awareness of mental health issues is increasing, actual treatment rates for adolescent depression remain lower than optimal. In contrast, the other options suggest that treatment is more widespread or conditional based on location or age, which does not reflect the broader trend seen in mental health statistics. Thus, the statement about most adolescents not being treated aligns with the existing research and understanding of adolescent mental health care access.

4. What can significantly decrease the risk and severity of head injuries among all-terrain vehicle (ATV) riders?

- A. Wearing protective clothing**
- B. Riding at lower speeds**
- C. Helmets**
- D. Using safety goggles**

Wearing helmets is a critical safety measure that significantly decreases the risk and severity of head injuries for ATV riders. Helmets are specifically designed to absorb impact forces during a crash, which helps protect the brain from traumatic injuries. They provide a structured layer of protection, covering the head and staying securely in place, which is vital in the event of an accident. While other safety measures, such as protective clothing, riding at lower speeds, and using safety goggles, contribute to overall safety during riding, they primarily help in reducing injuries to various parts of the body or decreasing the likelihood of crashes. However, head injuries are particularly dangerous and can lead to severe consequences, making helmet use one of the most effective ways to safeguard against such injuries.

5. The function of the thalamus includes the processing of which type of input?

- A. Motor control**
- B. Sensory input**
- C. Emotional responses**
- D. Reward system**

The thalamus plays a crucial role in the brain's functioning by acting as a relay station for sensory input. It is responsible for processing and transmitting sensory information from various parts of the body to the appropriate areas of the cerebral cortex. This includes inputs related to vision, hearing, touch, and taste, among others. The thalamus does not directly handle motor control, emotional responses, or reward systems, even though these functions may be influenced by sensory information processed through it. By filtering and prioritizing sensory signals, the thalamus ensures that the brain can effectively respond to the environment, making the correct identification of its function as processing sensory input vital for understanding how the brain integrates information.

6. Where is the Limbic system primarily located?

- A. Inside the brainstem**
- B. Below the cerebral hemispheres**
- C. In the cerebellum**
- D. At the base of the skull**

The limbic system is primarily located below the cerebral hemispheres. This area of the brain is crucial for many emotional and behavioral functions, including the regulation of emotions, memory processing, and certain aspects of motivation. The limbic system includes structures such as the hippocampus, amygdala, and parts of the thalamus, all of which are situated beneath the cerebral cortex. The location is significant because it enables the limbic system to interact effectively with other brain regions, particularly those responsible for higher cognitive functions. The cerebral hemispheres, which encompass the cerebral cortex, serve as the outer layer of the brain, while the limbic system operates more centrally and interfaces with areas that manage both emotional responses and memory, illustrating its role in both behavioral health and psychological processes.

7. D2 receptors are primarily found in which part of the brain?

- A. Cerebral cortex**
- B. Limbic system**
- C. Cerebellum**
- D. Brainstem**

D2 receptors, or dopamine D2 receptors, are predominantly located in the limbic system, which is crucial for emotional responses, motivation, and reward processes. This area of the brain integrates various cognitive functions and is significantly involved in regulating mood, pleasure, and reinforcement behaviors. The presence of D2 receptors in the limbic system highlights their role in several neuropsychiatric conditions, such as schizophrenia and addiction, where dopamine signaling is affected. Understanding the localization and function of D2 receptors helps in comprehending their impact on behavioral health, including how they influence mood disorders and behavioral responses. While the cerebral cortex, cerebellum, and brainstem have roles in various functions like higher cognitive processes, motor control, and autonomic functions, respectively, they do not have the same concentration of D2 receptors associated with the limbic system. This distinction emphasizes the limbic system's central role in emotional and behavioral regulation through dopamine pathways.

8. What is the estimated annual number of deaths caused by excessive alcohol consumption?

- A. 50,000**
- B. 88,000**
- C. 100,000**
- D. 120,000**

The estimated annual number of deaths caused by excessive alcohol consumption is approximately 88,000. This figure represents a significant public health issue, highlighting the impact of alcohol misuse on mortality rates in the United States. These deaths can result from various alcohol-related complications, including liver disease, alcohol poisoning, and accidents such as vehicle crashes that are linked to intoxication. The statistics underscore the importance of addressing alcohol consumption as a critical factor in health promotion and disease prevention strategies. Other options, while they provide numbers that may resonate with higher or lower statistics seen in various contexts, do not reflect the consensus among health authorities regarding the impact of alcohol use on mortality.

9. Which two parts of the limbic system react together to trigger emotions related to memory?

- A. Frontal lobe and insula**
- B. Thalamus and hypothalamus**
- C. Hippocampus and amygdala**
- D. Cerebellum and brain stem**

The hippocampus and amygdala work closely together in the limbic system to process emotions related to memories. The hippocampus is primarily responsible for the formation, organization, and storage of memories, while the amygdala plays a crucial role in processing emotions, particularly fear and pleasure. When we recall a memory, the amygdala can trigger emotional responses based on the significance of that memory, enhancing our emotional experience and influencing future behavior. In contrast, the other combinations do not directly link memory with emotional response in the same way. The frontal lobe and insula are involved in various cognitive functions and emotional processing but do not specifically focus on memory-related emotions. The thalamus acts as a relay station for sensory information, and while the hypothalamus is involved in regulating emotional responses, it does not have a direct role in memory. Lastly, the cerebellum primarily coordinates movement and balance, and the brain stem is essential for basic life functions, neither of which are focused on the intersection of emotion and memory processing within the limbic system.

10. What is a primary function of the medulla oblongata?

- A. Regulation of body temperature**
- B. Control of voluntary muscle movements**
- C. Responsible for homeostasis, breathing, heart rate, and blood pressure**
- D. Processing of sensory information**

The medulla oblongata plays a crucial role in regulating several involuntary functions that are essential for maintaining homeostasis in the body. It is primarily responsible for controlling vital autonomic functions such as breathing, heart rate, and blood pressure. This brainstem region receives signals from various parts of the body and responds accordingly to ensure that these functions remain stable, even during stress or changes in activity level. By maintaining these critical life-sustaining processes, the medulla oblongata supports the overall balance and functionality of the body's systems. Without the proper functioning of the medulla, vital processes such as respiration and circulation would be disrupted, leading to severe health consequences. In contrast, the other functions mentioned, like regulation of body temperature, control of voluntary muscle movements, and processing sensory information, are managed by different areas of the brain, highlighting the specificity of the medulla's role in the autonomic nervous system.