

Helicopter PPL Checkride Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Which of these is part of the CAMALFOOTS requirements for VFR Day?**
 - A. Seatbelts w/ shoulder harness**
 - B. Position Lights**
 - C. Anti Collision Lights**
 - D. Landing Lights**

- 2. How should a pilot respond to low G flight conditions?**
 - A. Increase power and adjust the cyclic aft**
 - B. Decrease throttle to increase Gs**
 - C. Reduce altitude rapidly**
 - D. Aft cyclic to restore G, then roll out of right roll**

- 3. What visual condition may cause a pilot to perceive a runway as higher than it is?**
 - A. Low visibility**
 - B. Upsloping Runway illusion**
 - C. Ground effect**
 - D. Aerial perspective**

- 4. Blade coning refers to what specific occurrence in rotor blades?**
 - A. Downward bend of the blades**
 - B. Change of pitch in the blades**
 - C. Upward sweep due to lift and centrifugal force**
 - D. Complete rigidity of blades**

- 5. What transponder code is designated for military use only?**
 - A. 7575**
 - B. 7777**
 - C. 7878**
 - D. 7979**

6. What should a pilot do if they lose the tail rotor in flight?

- A. Enter a spin maneuver**
- B. Pursue powered flight**
- C. Perform an auto rotation at 70+ knots**
- D. Increase throttle immediately**

7. What DOES NOT belong to the ARROW acronym for aircraft documents?

- A. Operating Handbook**
- B. Registration**
- C. Weight and Balance**
- D. Pilot Logbook**

8. The vertical hinge in a rotor system permits what type of movement?

- A. Vertical only**
- B. Forward and backward only**
- C. Rotational movement**
- D. All directional movements**

9. What occurs when the Pitot Tube becomes blocked?

- A. It accurately measures altitude**
- B. It acts like an altimeter**
- C. It causes an increase in airspeed readings**
- D. It stops functioning altogether**

10. What occurrence is indicated by undershooting when turning through North?

- A. Oversteering towards East**
- B. Turning too early West**
- C. Understeering towards West**
- D. Oversteering towards South**

Answers

SAMPLE

1. A
2. D
3. B
4. C
5. B
6. C
7. D
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. Which of these is part of the CAMALFOOTS requirements for VFR Day?

- A. Seatbelts w/ shoulder harness**
- B. Position Lights**
- C. Anti Collision Lights**
- D. Landing Lights**

The CAMALFOOTS acronym is a mnemonic used to help pilots remember the required equipment and features for VFR (Visual Flight Rules) operations during the day. The requirements include items related to safety and visibility. The inclusion of seatbelts with shoulder harnesses in the CAMALFOOTS requirements emphasizes the importance of safety in aircraft operations. Properly secured seatbelts are crucial for pilot and passenger safety, helping to protect occupants during turbulence or in the event of an emergency. The requirement for a shoulder harness adds an additional layer of safety, minimizing the risk of injury during sudden maneuvers. In the context of VFR day operations, while other equipment such as position lights, anti-collision lights, and landing lights play roles in enhancing visibility and safety, they are not part of the CAMALFOOTS acronym specifically for day operations. The focus for VFR day is primarily on items that can significantly impact occupant safety during typical flight conditions. Therefore, the correct answer reflects this requirement for seatbelts with shoulder harnesses, ensuring compliance with safety standards.

2. How should a pilot respond to low G flight conditions?

- A. Increase power and adjust the cyclic aft**
- B. Decrease throttle to increase Gs**
- C. Reduce altitude rapidly**
- D. Aft cyclic to restore G, then roll out of right roll**

In low G flight conditions, the primary concern is to restore normal G loading and maintain control of the helicopter. Low G conditions can lead to a variety of issues, including the risk of a main rotor stall, which can occur if the rotor system loses sufficient lift. The correct response involves applying aft cyclic to increase pitch attitude, which helps counteract the low G forces experienced. This action increases the load factor on the rotor system, helping to stabilize the aircraft and prevent further degradation of control. Following this, rolling out of any potential right roll induced by the low G environment ensures the aircraft remains in a controlled flight attitude. The other choices involve actions that do not effectively address the loss of G loading. For instance, increasing power without adjusting the cyclic does not alleviate the low G condition—indeed, it may exacerbate the situation. Decreasing throttle would further lower power and could contribute to an already unstable situation. Rapidly reducing altitude, while potentially instinctive in an attempt to regain control, does not directly address the problem of low G forces and may lead to an uncontrolled descent. Each of these alternative actions could lead to exacerbated control issues rather than the restoration of equilibrium in flight.

3. What visual condition may cause a pilot to perceive a runway as higher than it is?

- A. Low visibility**
- B. Upsloping Runway illusion**
- C. Ground effect**
- D. Aerial perspective**

The phenomenon known as the upsloping runway illusion occurs when pilots misjudge the angle or elevation of a runway. This illusion is typically experienced in certain visual conditions, primarily when a pilot is approaching a runway that slopes upward relative to their flight path. When this happens, the pilot can perceive the runway as being higher than it actually is. This misperception can lead to dangerous situations, especially during approaches and landings, where a pilot might be overly cautious and reduce the descent rate too much, potentially causing a prolonged approach or even a stall. The illusion is often amplified under low visibility conditions or when the surrounding terrain obscures the perspective of the runway's alignment with the ground. Understanding this illusion is crucial for pilots because it highlights the importance of relying on instruments as well as visual cues when making landing decisions, particularly in varied environments and conditions. Reducing reliance solely on visual perception helps mitigate safety risks associated with this illusion.

4. Blade coning refers to what specific occurrence in rotor blades?

- A. Downward bend of the blades**
- B. Change of pitch in the blades**
- C. Upward sweep due to lift and centrifugal force**
- D. Complete rigidity of blades**

Blade coning refers specifically to the phenomenon where rotor blades exhibit an upward sweep due to the combined effects of lift and centrifugal force. As the helicopter hovers or flies, the lift generated by the rotor blades causes them to bend upward at the tips, forming a conical shape. This effect is a result of both the aerodynamic forces acting on the blades and the centrifugal forces that arise as they rotate around the rotor hub. The upward sweep is significant because it affects the overall aerodynamics and performance of the rotor system. Understanding blade coning is crucial for pilots, as it influences factors like rotor efficiency, control response, and stability. The coning angle can be adjusted and compensated for through pilot input and rotor system design, ensuring safe and effective flight operations. This understanding of rotor blade dynamics is essential for maneuvering and operating the helicopter appropriately in various flight conditions.

5. What transponder code is designated for military use only?

- A. 7575
- B. 7777**
- C. 7878
- D. 7979

The transponder code designated for military use only is 7777. This specific code is reserved for military aircraft operations and is used to identify military flights in controlled airspace. The use of a dedicated transponder code helps air traffic control distinguish military aircraft from civilian traffic, enabling better situational awareness and management of airspace. In the context of air traffic management, different codes are allocated for various purposes, including search and rescue, emergencies, and military operations. While other codes exist for different functions or general air traffic, 7777 explicitly stands out as the code for military utilization, ensuring that military aircraft receive the necessary attention and clearance in busy airspace. This dedicated classification supports operational security and efficiency for military engagements.

6. What should a pilot do if they lose the tail rotor in flight?

- A. Enter a spin maneuver
- B. Pursue powered flight
- C. Perform an auto rotation at 70+ knots**
- D. Increase throttle immediately

If a pilot loses the tail rotor in flight, the most appropriate action is to perform an auto-rotation, particularly while maintaining a speed of 70 knots or more. This approach helps control the helicopter while reducing the risk of uncontrollable yaw due to the loss of the tail rotor's thrust. In an autorotation, the pilot allows the helicopter to transition from powered flight to a descent where the main rotor is driven by the upward flow of air rather than engine power. Maintaining forward airspeed is crucial, as it helps to maintain control and stability during descent and allows for a safer landing. At 70 knots or higher, the helicopter has better aerodynamic efficiency, making it easier for the pilot to manage the situation and maintain directional control as the aircraft descends. Performing an autorotation gives the pilot a chance to land safely, minimizing the potential for loss of control and maximizing the chances of a survivable outcome.

7. What DOES NOT belong to the ARROW acronym for aircraft documents?

- A. Operating Handbook**
- B. Registration**
- C. Weight and Balance**
- D. Pilot Logbook**

The ARROW acronym is used to help pilots remember the essential documents that must be on board an aircraft when it is in operation. Each letter in the acronym corresponds to a specific type of document required for legal flight operations. The 'A' represents the Airworthiness Certificate, which confirms that the aircraft meets safety standards. The 'R' stands for Registration, which shows that the aircraft is registered with the appropriate aviation authority. The 'R' also indicates the responsibility of keeping the aircraft's details up to date in the registry. The 'O' is for the Operating Handbook (often referred to as the POH - Pilot Operating Handbook), which provides critical operational information for safely navigating and managing the aircraft. The 'W' signifies the Weight and Balance documentation, which is crucial for ensuring the aircraft is loaded within its safe operating limits. The Pilot Logbook, while important for tracking flight time and pilot qualifications, is not required to be carried on the aircraft. It is primarily a record of a pilot's flying experience and qualifications rather than a mandatory document for aircraft operation. Because of this distinction, it does not fit within the ARROW acronym, making it the correct answer for what does not belong.

8. The vertical hinge in a rotor system permits what type of movement?

- A. Vertical only**
- B. Forward and backward only**
- C. Rotational movement**
- D. All directional movements**

The vertical hinge in a rotor system is responsible for allowing a range of movement that accommodates the natural dynamics of the rotor blades during flight. Specifically, the vertical hinge permits both forward and backward (also known as flapping) movement of the rotor blades. This flapping motion occurs due to changes in lift caused by variations in airspeed and load on the blades. As a helicopter maneuvers, different blades experience different aerodynamic forces, which require them to flap up or down relative to the rotor hub to maintain balance and stability. The other options do not accurately describe the function of the vertical hinge. It does not allow for vertical movement as a standalone function, nor is it responsible for rotational movement. These types of movements are facilitated by different components within the rotor system. The vertical hinge is specifically designed to support the dynamic flapping motion that is crucial for the helicopter's performance during flight.

9. What occurs when the Pitot Tube becomes blocked?

- A. It accurately measures altitude
- B. It acts like an altimeter**
- C. It causes an increase in airspeed readings
- D. It stops functioning altogether

When the Pitot Tube becomes blocked, it leads to a malfunction that causes the airspeed indicator to behave incorrectly. Specifically, a blockage typically results in the reading indicating an altitude rather than true airspeed. This happens because the Pitot Tube measures dynamic pressure—essentially, the difference between static pressure and the impact pressure of the air as the helicopter moves forward. If it is blocked, it cannot accurately sense this dynamic pressure, and as the helicopter climbs or descends, the airspeed indicator can respond to changes in atmospheric pressure, mimicking the behavior of an altimeter. In this situation, readings may be misleading, presenting the pilot with the appearance of altitude changes rather than actual airspeed, even though the aircraft's speed through the air has not changed. Understanding this behavior is crucial for helicopter pilots, as reliance on incorrect airspeed readings can pose serious risks during flight operations.

10. What occurrence is indicated by undershooting when turning through North?

- A. Oversteering towards East
- B. Turning too early West
- C. Understeering towards West**
- D. Oversteering towards South

The occurrence of undershooting when turning through North typically indicates understeering towards the West. When a pilot is making a turn to the North and realizes they have not turned enough, it shows that they did not apply enough bank angle or did not initiate the turn properly, resulting in a failure to reach the intended heading. This undershooting indicates that the helicopter has not turned sufficiently to achieve the desired North heading, meaning that the helicopter is still pointing more towards the West than intended. This situation can arise from either hesitant control input or inaccurate timing when starting the turn, leading to a need for increased attention to maintain proper heading control. This scenario contrasts with the other choices. Oversteering towards East or South would mean that the turn was executed too aggressively, causing the helicopter to exceed the desired North heading rather than falling short of it. Turning too early towards the West would suggest a miscalculation in timing that does not align with the concept of undershooting. Understanding this concept is crucial for maintaining proper turn techniques and navigational accuracy in flight operations.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://helicopterpplcheckride.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE