
HashiCorp Terraform
Infrastructure as Code (IaC)
Practice Test (Sample)
Study Guide

Everything you need from our exam experts!

Sample study guide. Visit https://hashicorpterraformiac.examzify.com

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any
means, graphic, electronic, or mechanical, including photocopying,
recording, web distribution, taping, or by any information storage retrieval
system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable
sources accurate, complete, and timely information about this product.

1Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

Questions

2Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

1. What is the recommended approach to protect sensitive
data identified by the security team in Terraform state files?
A. Store the state in an encrypted backend
B. Always store your secrets in a secrets.tfvars file
C. Delete the state file every time you run Terraform
D. Edit your state file to scrub out the sensitive data

2. What does the 'terraform state' command do?
A. It initializes the backend for storing state files
B. It is used to manipulate the Terraform state directly
C. It helps in downloading the latest provider versions
D. It generates reports based on infrastructure changes

3. What file is typically used to specify multiple environments
in Terraform?
A. terraform.netvars
B. terraform.tfvars
C. terraform.env
D. terraform.config

4. What language is used to write Terraform configuration
files?
A. JavaScript
B. Python
C. HashiCorp Configuration Language (HCL)
D. Ruby on Rails

5. Which Terraform command is used to initialize a working
directory?
A. terraform start
B. terraform init
C. terraform setup
D. terraform configure

3Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

6. How can you ensure consistent environments when using
Terraform?
A. By frequently updating configurations manually
B. By using the same configuration files and state management

across environments
C. By deploying to multiple cloud providers simultaneously
D. By using separate versions of Terraform for each

environment

7. What type of values can variables in Terraform hold?
A. Only string values
B. Strings, numbers, lists, maps, and booleans
C. Only numeric values
D. Strings and lists only

8. How can you maintain idempotency in Terraform
configurations?
A. By writing imperative scripts
B. By using resource dependencies
C. By writing declarative configurations
D. By running 'terraform validate'

9. How can you protect sensitive information in Terraform
variables?
A. By marking variables as sensitive in the configuration
B. By encrypting the configuration files
C. By using version control to store variables
D. By limiting access to the Terraform state file

10. What is a data source in Terraform?
A. A read-only reference that allows you to fetch and use

information from existing resources
B. A method to create new resources in your configuration
C. A temporary storage for sensitive information
D. A tool for managing Terraform modules

4Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

Answers

5Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

1. A
2. B
3. B
4. C
5. B
6. B
7. B
8. C
9. A
10. A

6Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

Explanations

7Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

1. What is the recommended approach to protect sensitive
data identified by the security team in Terraform state files?
A. Store the state in an encrypted backend
B. Always store your secrets in a secrets.tfvars file
C. Delete the state file every time you run Terraform
D. Edit your state file to scrub out the sensitive data

The best approach to protect sensitive data in Terraform state files is to store the state in
an encrypted backend. When using an encrypted backend, all data, including sensitive
information like secrets, access tokens, and passwords, is encrypted at rest. This means
that even if an unauthorized individual were to gain access to the state file, they would
not be able to read the sensitive information without the appropriate decryption keys.
Using an encrypted backend adds a strong layer of security and aligns with best practices
in Infrastructure as Code. Many backends that support Terraform, such as AWS S3 with
server-side encryption, Azure Blob Storage with encryption, or HashiCorp's own
Terraform Cloud, provide options for encryption that can ensure that sensitive data is not
exposed. Other approaches mentioned are less effective. Storing secrets in a separate
variables file that is not encrypted does not prevent exposure if the file is accessed
improperly. Deleting state files after every run would be impractical and would severely
hinder Terraform's ability to track resources over time. Editing state files to remove
sensitive data is risky and can lead to corruption or loss of important information needed
for managing infrastructure. Thus, utilizing an encrypted backend is the most robust
and recommended method for protecting sensitive data in Terraform state files.

2. What does the 'terraform state' command do?
A. It initializes the backend for storing state files
B. It is used to manipulate the Terraform state directly
C. It helps in downloading the latest provider versions
D. It generates reports based on infrastructure changes

The 'terraform state' command is primarily designed for direct manipulation of the
Terraform state file. This command provides users with the capability to examine and
modify the current state of their managed infrastructure. This includes functions such as
pulling up the current state, manipulating the resources within that state, and making
changes that might not be easily achievable through regular Terraform commands. It is a
crucial tool for advanced users who need to address specific issues or make fine-tuned
adjustments without applying changes through standard Terraform plans and applies.
The other options focus on different commands or functionalities in Terraform.
Initializing the backend for storing state files is handled by the 'terraform init' command,
while downloading the latest provider versions falls under updating providers through
the 'terraform init -upgrade' command. Generating reports based on infrastructure
changes typically involves using 'terraform plan' or 'terraform apply', rather than directly
engaging with the state file. Each of these commands serves a distinct purpose within the
Terraform workflow, highlighting the specialized role that the state command plays in
managing and interacting with the infrastructure state directly.

8Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

3. What file is typically used to specify multiple environments
in Terraform?
A. terraform.netvars
B. terraform.tfvars
C. terraform.env
D. terraform.config

The file that is commonly used to specify multiple environments in Terraform is
`terraform.tfvars`. This file allows you to define variable values that can be passed to
your Terraform configuration. When managing multiple environments, it is effective to
use different `tfvars` files for each environment, such as `dev.tfvars`, `prod.tfvars`, etc.
This approach helps streamline the process of deploying infrastructure by ensuring that
each environment can have its own specific configurations, settings, and variable values.
Using `terraform.tfvars` makes it easy to manage these configurations since Terraform
automatically loads the variables defined in this file when running commands. This
eliminates the need for providing values explicitly on the command line or modifying
configuration files directly, allowing for a cleaner separation of environment-specific
settings. While other file options exist, such as `.netvars`, `.env`, and `.config`, they do
not serve the same primary function of directly storing environment-specific variable
values in a standard and recognized manner as `terraform.tfvars` does in Terraform
usage. This is why `terraform.tfvars` is the preferred choice for managing multiple
environments effectively.

4. What language is used to write Terraform configuration
files?
A. JavaScript
B. Python
C. HashiCorp Configuration Language (HCL)
D. Ruby on Rails

Terraform configuration files are written using the HashiCorp Configuration Language
(HCL). HCL is designed specifically for defining infrastructure as code in a
human-readable format, which makes it easier for users to write and understand their
configuration files. Its syntax is declarative, enabling users to specify what they want the
infrastructure to look like rather than detailing the steps to create it. This is particularly
advantageous for maintaining clarity and ease of use in complex configurations. The use
of HCL also allows Terraform to perform efficient parsing and validation of configuration
files, aiding in error detection and helping practitioners implement best practices in
infrastructure management. Furthermore, HCL’s versatility extends to supporting both
JSON format for configurations, but HCL is favored for its user-friendly syntax. Other
programming languages like JavaScript, Python, and Ruby on Rails were not designed for
this purpose, making them unsuitable for writing Terraform configuration files.
Additionally, they do not provide the same level of integration and direct applicability for
infrastructure as code scenarios that HCL offers.

9Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

5. Which Terraform command is used to initialize a working
directory?
A. terraform start
B. terraform init
C. terraform setup
D. terraform configure

The command used to initialize a working directory in Terraform is indeed "terraform
init." This command is essential for preparing the working directory for other Terraform
commands. When you run "terraform init," it performs several important tasks including
downloading the necessary provider plugins specified in your Terraform configuration
files, initializing the backend for state storage, and setting up the directory structure for
Terraform to work with. "Terraform init" is typically the first command you should run
after creating a new Terraform configuration. It ensures that the local workspace is
ready for managing resources defined in your configuration files. The other options
listed do not correspond to any official Terraform commands. "terraform start,"
"terraform setup," and "terraform configure" are not recognized commands within the
Terraform ecosystem, as they do not perform any functions related to initializing the
workspace or handling the project setup. Therefore, focusing on "terraform init" is
critical for understanding how to properly begin working with Terraform and manage
infrastructure as code effectively.

6. How can you ensure consistent environments when using
Terraform?
A. By frequently updating configurations manually
B. By using the same configuration files and state management

across environments
C. By deploying to multiple cloud providers simultaneously
D. By using separate versions of Terraform for each

environment
To ensure consistent environments when using Terraform, using the same configuration
files and state management across environments is the most effective approach. This
practice helps maintain uniformity in the infrastructure that is provisioned, as the
configuration files define the specific resources, their properties, and how they relate to
each other. By leveraging the same Terraform configuration, environments can be
created or modified with the same settings, which minimizes discrepancies and errors
that could arise from manual updates or different configurations. Consistent state
management is also crucial, as it tracks the resources created by Terraform and ensures
that each environment's state reflects the actual infrastructure. Proper state
management across environments avoids conflicts and confusion about the current state
of resources. This practice leads to a reliable and repeatable deployment process,
making it easier to manage multiple environments (such as development, testing, and
production) with confidence that they are all aligned with the same specifications.

10Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

7. What type of values can variables in Terraform hold?
A. Only string values
B. Strings, numbers, lists, maps, and booleans
C. Only numeric values
D. Strings and lists only

Variables in Terraform are versatile and can hold a wide range of value types, which is
crucial for creating flexible and reusable code. Specifically, variables can hold strings,
numbers, lists, maps, and booleans. This variety allows Terraform configurations to adapt
to different situations and architectures. - Strings are used for textual data, such as
resource names or configuration settings. - Numbers can represent integer and
floating-point values, which are essential for specifying resource sizes or counts. - Lists
are ordered collections of values that can be of any type, enabling complex
parameterizations where multiple values are handled together. - Maps are collections of
key-value pairs, allowing for structured data that is easy to manage and reference
throughout the configuration. - Booleans (true or false values) are critical for conditional
logic within infrastructure code. Having the capability to define variables in these
diverse formats makes Terraform a powerful tool for infrastructure as code, ensuring
configurations are not only dynamic but also maintainable. This flexibility is essential for
accommodating various resource configurations and environments.

8. How can you maintain idempotency in Terraform
configurations?
A. By writing imperative scripts
B. By using resource dependencies
C. By writing declarative configurations
D. By running 'terraform validate'

Maintaining idempotency in Terraform configurations is fundamentally achieved by
writing declarative configurations. In Terraform, a declarative approach means you
define the desired state of your infrastructure rather than specifying the steps to reach
that state. This allows Terraform to manage changes intelligently, ensuring that if you
apply the same configuration multiple times, your infrastructure ends up in the same
state without unintended side effects. When you declare resources, Terraform compares
the current state of the infrastructure with the desired state specified in your
configuration files. If the desired state matches the actual state, no actions are taken,
which reinforces the concept of idempotency. This ensures that repeated applications of
the same configuration yield the same results, preventing any unwanted modifications.
On the other hand, writing imperative scripts (the first choice) involves specifying exact
commands that change the infrastructure imperatively, which does not inherently
guarantee that repeated executions will lead to the same outcome. Resource
dependencies (the second choice) help Terraform understand the relationships between
resources but do not directly ensure idempotency by themselves. Running 'terraform
validate' (the fourth choice) checks the configuration for syntax and validity but does not
enforce idempotency in terms of resource management. Thus, utilizing declarative
configurations is the key practice for achieving idempotency in

11Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

9. How can you protect sensitive information in Terraform
variables?
A. By marking variables as sensitive in the configuration
B. By encrypting the configuration files
C. By using version control to store variables
D. By limiting access to the Terraform state file

Marking variables as sensitive in the Terraform configuration is a crucial practice for
protecting sensitive information. When you declare a variable as sensitive, Terraform
ensures that its value is not displayed in the command line output or logs, thus reducing
the risk of leaking sensitive information such as passwords, API keys, or other
confidential data. This feature helps manage sensitive data more securely by preventing
accidental exposure during Terraform runs. It effectively informs Terraform and anyone
using the code that the variable contains sensitive information. By correctly using the
sensitive attribute, you maintain a level of confidentiality throughout the infrastructure
provisioning process. While other methods such as encrypting configuration files, using
version control, and limiting access to the Terraform state file contribute to security,
they do not directly prevent sensitive data from being exposed during Terraform
operations like marking a variable as sensitive does. Encrypting configuration files does
offer a layer of security but doesn't inherently prevent logging of sensitive information
during execution. Utilizing version control can create risks if sensitive values are
committed without consideration, and limiting access to the Terraform state file is more
about managing permissions than obscuring values during execution. Thus, the most
effective approach within the context provided is to specifically mark variables as
sensitive in the configuration.

10. What is a data source in Terraform?
A. A read-only reference that allows you to fetch and use

information from existing resources
B. A method to create new resources in your configuration
C. A temporary storage for sensitive information
D. A tool for managing Terraform modules

A data source in Terraform serves as a read-only reference that enables users to fetch
and utilize information from existing resources that are managed outside of Terraform or
by separate configurations. This feature is essential for integrating with existing
infrastructure, allowing you to reference attributes of resources that have already been
created. By using data sources, you can gather information such as instance IDs, security
group attributes, or any other relevant data that you need to incorporate into your
configuration without having to create those resources again. This capability promotes
a modular and efficient approach to building infrastructure, as it allows for the reuse of
existing elements rather than duplicating efforts. It enhances collaboration within teams
and ensures that your configurations are aware of the up-to-date state of existing
resources. In contrast, the other choices do not accurately describe what a data source
is. Creating new resources refers to resource blocks, while temporary storage for
sensitive information pertains to the use of variables or Terraform's sensitive attributes.
Managing Terraform modules involves structuring and organizing configuration files,
which is different from the function of a data source.

 v-1759070598 | Page 12Sample study guide. Visit https://hashicorpterraformiac.examzify.com for the full version

SA
M

PLE

