

Harr Microbiology Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. The Hair Baiting Test is used to differentiate which two species of *Trichophyton* that produce red colonies on Sabouraud agar plates?**
 - A. *T. mentagrophytes* and *T. rubrum***
 - B. *T. tonsurans* and *T. schoenleinii***
 - C. *T. tonsurans* and *T. violaceum***
 - D. *T. verrucosum* and *T. rubrum***
- 2. Which characteristic differentiates *E. coli* from *Shigella* species?**
 - A. Production of hydrogen sulfide**
 - B. Ability to ferment lactose**
 - C. Urease production**
 - D. Mannitol fermentation**
- 3. A 29-year-old male with skin ulcers and a poorly staining coccobacillus is indicative of which organism?**
 - A. *A. Pseudomonas aeruginosa***
 - B. *Pseudomonas fluorescens***
 - C. *Chryseobacterium* spp.**
 - D. *Francisella tularensis***
- 4. Which organism is characterized as an oxidase-positive, nonmotile gram-negative coccobacillus?**
 - A. *Bordetella pertussis***
 - B. *Brucella* spp.**
 - C. *Haemophilus* spp.**
 - D. *Legionella pneumophila***
- 5. What may indicate the presence of a coagulase-positive *Staphylococcus* in a culture?**
 - A. Inhibition zone of 6-12 mm with novobiocin**
 - B. Tube coagulase test positive at 4 hours**
 - C. Catalase test negative**
 - D. A distinct pink color in the acetoin test**

6. What procedure should be taken for a hunter bitten by a fox suspected of rabies?

- A. Spinal tap with CSF**
- B. Administration of hyperimmune antirabies globulin and rabies vaccine**
- C. Biopsy of the wound site**
- D. Throat culture and blood culture**

7. Which two tests are best to differentiate *A. hydrophilia* from *P. shigelloides*?

- A. Oxidase and motility**
- B. Indole and lysine decarboxylase**
- C. DNase and VP**
- D. Growth on MacConkey and blood agar**

8. Which gram-negative diplococci can be presumptively identified from a positive oxidase test?

- A. *Neisseria gonorrhoeae***
- B. *Neisseria meningitidis***
- C. *Neisseria lactamica***
- D. All of these options**

9. At what temperature does *Mycobacterium marinum* optimally grow on Lowenstein-Jensen agar?

- A. 30°C**
- B. 37°C**
- C. 42°C**
- D. 25°C**

10. Which virus in the Reoviridae group causes gastroenteritis in infants and young children?

- A. Coxsackie V virus**
- B. Rotavirus**
- C. Respiratory syncytial virus**
- D. Rhabdovirus**

Answers

SAMPLE

1. A
2. B
3. D
4. A
5. B
6. B
7. B
8. D
9. A
10. B

SAMPLE

Explanations

SAMPLE

1. The Hair Baiting Test is used to differentiate which two species of *Trichophyton* that produce red colonies on Sabouraud agar plates?

- A. *T. mentagrophytes* and *T. rubrum***
- B. *T. tonsurans* and *T. schoenleinii***
- C. *T. tonsurans* and *T. violaceum***
- D. *T. verrucosum* and *T. rubrum***

The Hair Baiting Test is a specific laboratory technique used to distinguish between certain species of the dermatophyte genus *Trichophyton* based on their ability to invade and grow on hair. In this context, the test is particularly effective in differentiating *T. mentagrophytes* from *T. rubrum*. *T. mentagrophytes* typically exhibits a rapid growth pattern and produces microconidia, while *T. rubrum* tends to be slower growing and is characterized by its unique morphology, producing distinctive red colonies on Sabouraud agar. The Hair Baiting Test exploits these differences, as *T. mentagrophytes* can metabolize keratin in hair, leading to a visible growth response, whereas *T. rubrum* does not utilize hair in the same way, allowing for clear differentiation between the two species. Understanding this technique and the responses of these fungi to hair helps in accurately diagnosing dermatophyte infections, making the Hair Baiting Test a valuable tool in microbiology.

2. Which characteristic differentiates *E. coli* from *Shigella* species?

- A. Production of hydrogen sulfide**
- B. Ability to ferment lactose**
- C. Urease production**
- D. Mannitol fermentation**

Escherichia coli (*E. coli*) is characterized by its ability to ferment lactose, which is a key trait that sets it apart from *Shigella* species. The fermentation of lactose is evident in laboratory settings, especially on differential media such as MacConkey agar, where *E. coli* colonies appear pink due to acid production from lactose fermentation. This lactose fermentation capability is a reflection of the metabolic pathways active in *E. coli*, allowing it to utilize lactose as an energy source. In contrast, *Shigella* species do not ferment lactose and are typically lactose-negative. This distinction is particularly critical in clinical microbiology as it aids in the identification and differentiation between these two genera of enteric bacteria. Identifying the ability to ferment lactose thus serves as a straightforward diagnostic characteristic in distinguishing *E. coli* from *Shigella*. While other characteristics listed, such as hydrogen sulfide production, urease production, and mannitol fermentation, can provide insights into the metabolic profiles of different bacterial species, they do not serve as definitive differentiators between *E. coli* and *Shigella* in a clinical context. Therefore, the ability to ferment lactose is the most telling characteristic separating *E. coli* from *Shigella* species.

3. A 29-year-old male with skin ulcers and a poorly staining coccobacillus is indicative of which organism?

- A. *Pseudomonas aeruginosa***
- B. *Pseudomonas fluorescens***
- C. *Chryseobacterium spp.***
- D. *Francisella tularensis***

The presence of skin ulcers coupled with a poorly staining coccobacillus is characteristic of *Francisella tularensis*. This organism is a highly infectious bacterium that can cause tularemia, a disease that often manifests with skin ulcers, especially following exposure to infected animals or arthropod bites. *Francisella tularensis* is known for its small size and unique staining characteristics, which can make it challenging to identify using standard methods; it often requires specialized culture conditions for growth due to its fastidious nature. In the context of other microorganisms, *Pseudomonas aeruginosa* and *Pseudomonas fluorescens* are both types of bacteria that can cause various infections but are not associated predominantly with ulcerative skin lesions in the same way. *Chryseobacterium spp.* is a group of bacteria that could be implicated in skin infections but does not typically present with the specific ulceration pattern linked to tularemia. Thus, the clinical presentation and the characteristics of the bacteria point specifically to *Francisella tularensis* in this scenario.

4. Which organism is characterized as an oxidase-positive, nonmotile gram-negative coccobacillus?

- A. *Bordetella pertussis***
- B. *Brucella spp.***
- C. *Haemophilus spp.***
- D. *Legionella pneumophila***

The organism characterized as an oxidase-positive, nonmotile gram-negative coccobacillus is *Bordetella pertussis*. This bacterium is well-known as the causative agent of whooping cough (pertussis) and is typically identified through its morphology, which is that of a small, nonmotile coccobacillus under the microscope. In addition to its morphology, *Bordetella pertussis* is oxidase-positive, which is a key biochemical characteristic that helps differentiate it from other organisms in the same category. This oxidase test determines the presence of cytochrome c oxidase in the organism, a feature that is significant for identification in microbiological laboratories. While *Brucella spp.* and *Haemophilus spp.* are also nonmotile and can appear as coccobacilli, they differ in their oxidase reactions and other key biochemical and pathogenic characteristics. Specifically, *Brucella* is known for being non-fermentative and can be facultatively aerobic, while *Haemophilus spp.*, particularly *Haemophilus influenzae*, are typically classified as bacilli rather than coccobacilli. *Legionella pneumophila* is a completely different organism, classified as a bacillus rather than

5. What may indicate the presence of a coagulase-positive *Staphylococcus* in a culture?

- A. Inhibition zone of 6-12 mm with novobiocin**
- B. Tube coagulase test positive at 4 hours**
- C. Catalase test negative**
- D. A distinct pink color in the acetoin test**

The presence of a coagulase-positive *Staphylococcus*, particularly *Staphylococcus aureus*, is often indicated by a positive result in the tube coagulase test. This test detects the ability of the bacteria to produce coagulase, an enzyme that can convert fibrinogen to fibrin, leading to clot formation. In the context of this question, a positive tube coagulase test result at 4 hours is particularly significant because it confirms the presence of coagulase-positive organisms like *S. aureus*, which is clinically important for diagnosing infections caused by this pathogen. The rapid timeframe of 4 hours for a positive test result makes identification practical in a clinical laboratory setting, allowing for timely medical decision-making. In contrast, other tests and indicators mentioned in the options either do not directly confirm coagulase activity or are relevant to different aspects of bacterial identification. For instance, the inhibition zone related to novobiocin is predominantly used to differentiate between *Staphylococcus saprophyticus* and other coagulase-negative *Staphylococcus* species rather than directly indicating coagulase activity.

6. What procedure should be taken for a hunter bitten by a fox suspected of rabies?

- A. Spinal tap with CSF**
- B. Administration of hyperimmune antirabies globulin and rabies vaccine**
- C. Biopsy of the wound site**
- D. Throat culture and blood culture**

For a hunter bitten by a fox suspected of rabies, the most appropriate procedure is the administration of hyperimmune antirabies globulin and rabies vaccine. This is critical because rabies is a viral infection that can be fatal once clinical symptoms appear, and the risk of transmission from a suspected rabid animal is high. The rabies post-exposure prophylaxis (PEP) includes a treatment regimen that consists of both passive and active immunity. The hyperimmune antirabies globulin provides immediate passive immunity by neutralizing the virus, while the rabies vaccine elicits an active immune response to prepare the body to combat any potential viral infection. Timely intervention is vital, as the rabies virus progresses rapidly, and once the symptoms are present, the disease is almost universally fatal. In this context, other procedures like spinal taps or biopsies would not provide the necessary intervention against rabies and are not routinely recommended in this scenario. Blood or throat cultures would neither detect the presence of the rabies virus nor provide any preventive measures against its fatal effects. Thus, the combination of hyperimmune globulin and the rabies vaccine is the established protocol for potential rabies exposure, making it the correct and critical choice in this situation.

7. Which two tests are best to differentiate *A. hydrophilia* from *P. shigelloides*?

- A. Oxidase and motility**
- B. Indole and lysine decarboxylase**
- C. DNase and VP**
- D. Growth on MacConkey and blood agar**

The selection of indole and lysine decarboxylase tests as the correct method for differentiating between *Aeromonas hydrophila* and *Plesiomonas shigelloides* is based on the unique biochemical characteristics of these two bacterial species. *Aeromonas hydrophila* is typically indole-positive, meaning it can produce indole from tryptophan, which is a distinctive feature in the identification process. On the other hand, *Plesiomonas shigelloides* is usually indole-negative. Therefore, the indole test serves as a clear differentiator between these two organisms. Additionally, the lysine decarboxylase test distinguishes the ability of some bacteria to decarboxylate lysine to produce cadaverine. *A. hydrophila* is typically lysine decarboxylase-positive, while *P. shigelloides* is usually negative. This additional biochemical trait provides further confirmation in differentiating between the two species. Collectively, these tests exploit specific metabolic pathways characteristic to each organism, making them reliable for the differentiation of *A. hydrophila* and *P. shigelloides* in a clinical or laboratory setting.

8. Which gram-negative diplococci can be presumptively identified from a positive oxidase test?

- A. *Neisseria gonorrhoeae***
- B. *Neisseria meningitidis***
- C. *Neisseria lactamica***
- D. All of these options**

The correct choice indicates that all the listed organisms—*Neisseria gonorrhoeae*, *Neisseria meningitidis*, and *Neisseria lactamica*—can be identified using a positive oxidase test. The genus *Neisseria*, which contains these three species, is characterized as gram-negative and has a distinct morphology of diplococci (paired spherical bacteria). A positive oxidase test is specifically significant in the identification of *Neisseria* species because they possess cytochrome c oxidase, an enzyme used in the electron transport chain. This enzyme catalyzes the oxidation of cytochrome c and reduces oxygen, leading to a color change in the oxidase reagent when the test is performed. When any of the three species—*N. gonorrhoeae*, *N. meningitidis*, or *N. lactamica*—are cultured and tested, they will yield a positive result, confirming their identity within the *Neisseria* genus. In practice, this means that regardless of which specific *Neisseria* species is being tested, the positive oxidase test serves as a reliable method to presumptively identify any of these organisms as gram-negative diplococci that could potentially cause various infections. Thus, labeling all the options in this context

9. At what temperature does *Mycobacterium marinum* optimally grow on Lowenstein-Jensen agar?

- A. 30°C**
- B. 37°C**
- C. 42°C**
- D. 25°C**

Mycobacterium marinum is known to thrive at a temperature of approximately 30°C, which correlates with its natural habitat. This species is typically associated with aquatic environments, making the slightly lower temperature optimal for its growth compared to other *Mycobacterium* species that prefer higher temperatures, such as *Mycobacterium tuberculosis*, which optimally grows around 37°C. The use of Lowenstein-Jensen agar, which is specifically formulated for the isolation of mycobacteria, supports aerobic growth and provides the necessary nutrients for *Mycobacterium marinum* under these optimal conditions. Understanding the temperature requirements of different mycobacteria is crucial for accurate laboratory identification and for ensuring successful culture conditions.

10. Which virus in the Reoviridae group causes gastroenteritis in infants and young children?

- A. Coxsackie V virus**
- B. Rotavirus**
- C. Respiratory syncytial virus**
- D. Rhabdovirus**

The virus from the Reoviridae family that is known to cause gastroenteritis in infants and young children is Rotavirus. This virus is particularly significant in pediatric medicine, as it can lead to severe diarrhea, dehydration, and other gastrointestinal symptoms in this age group. Rotavirus is transmitted via the fecal-oral route and is highly contagious, often leading to outbreaks in settings like daycare centers. In addition to its role in gastrointestinal illness, Rotavirus has a well-developed vaccine, which has significantly reduced the incidence of severe gastroenteritis among vaccinated populations. The disease commonly arises in infants and children under five years old, making it a critical public health concern. Other viruses listed do not primarily cause gastroenteritis. For instance, Coxsackie viruses can result in hand, foot, and mouth disease, while respiratory syncytial virus primarily impacts the respiratory system, leading to illnesses such as bronchiolitis and pneumonia in children. Lastly, Rhabdoviruses, as represented by the rabies virus, are not associated with gastroenteritis and instead affect the nervous system.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://harrmicrobiology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE