

Ham Radio Extra Class Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What might help to restore contact when DX signals become too weak to copy across an entire HF band a few hours after sunset?**
 - A. Switch to a higher frequency HF band**
 - B. Switch to a lower frequency HF band**
 - C. Wait 90 minutes or so for the signal degradation to pass**
 - D. Wait 24 hours before attempting another communication on the band**

- 2. What type of license is needed to operate a beacon station?**
 - A. A technician license**
 - B. A valid amateur radio operator license that meets specific requirements**
 - C. A general class license only**
 - D. A special event license**

- 3. What is a primary requirement for obtaining an Extra class amateur radio license?**
 - A. A basic understanding of FCC regulations**
 - B. An understanding of advanced electronics and radio theory**
 - C. Completion of a mentorship program**
 - D. Passing a trade examination**

- 4. What do the letters in a satellite's mode designator specify?**
 - A. Power limits for uplink and downlink transmissions**
 - B. The location of the ground control station**
 - C. The polarization of uplink and downlink signals**
 - D. The uplink and downlink frequency ranges**

- 5. What is the approximate bandwidth of a slow-scan TV signal?**
 - A. 600 Hz**
 - B. 3 kHz**
 - C. 2 MHz**
 - D. 6 MHz**

6. Which mode of modulation is recommended for reliable data transfer in amateur radio?

- A. AM modulation**
- B. FM modulation**
- C. SSB modulation**
- D. PM modulation**

7. Which of the following devices is commonly used for frequency monitoring?

- A. A band scope**
- B. A dipole antenna**
- C. A handheld transceiver**
- D. A signal generator**

8. What is the legal power limit for Satellite Communication in the 1.2 GHz band?

- A. 500 watts EIRP**
- B. 1,000 watts EIRP**
- C. 1,500 watts EIRP**
- D. 2,000 watts EIRP**

9. In what way can amateur radio support emergency management?

- A. By providing financial support to emergency responders**
- B. By offering training programs for emergency personnel**
- C. By offering backup communications when regular systems fail**
- D. By developing emergency management software**

10. What is the function of an SWR meter?

- A. To measure voltage levels in transmissions.**
- B. To determine the SWR in a feedline.**
- C. To amplify the received signal strength.**
- D. To regulate power to the antenna.**

Answers

SAMPLE

1. B
2. B
3. B
4. D
5. B
6. C
7. A
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

- 1. What might help to restore contact when DX signals become too weak to copy across an entire HF band a few hours after sunset?**
 - A. Switch to a higher frequency HF band**
 - B. Switch to a lower frequency HF band**
 - C. Wait 90 minutes or so for the signal degradation to pass**
 - D. Wait 24 hours before attempting another communication on the band**

Switching to a lower frequency HF band is a well-established technique when trying to restore contact with distant signals, especially during the evening hours after sunset. As the sun sets, the D layer of the ionosphere, which absorbs RF signals, diminishes, allowing higher frequency signals to propagate better at night. However, after sunset, certain bands can experience a reduction in usable propagation. Lower frequency bands, such as those in the 75 meter (3.8 MHz) or 160 meter (1.8 MHz) range, tend to have better propagation characteristics during the evening and nighttime hours due to their ability to reflect off the ionosphere more effectively than higher frequency signals at this time. This is due to their longer wavelengths, which can penetrate the ionosphere better at lower frequencies and make them more resilient to fading and weakening, which often occurs on higher frequency bands. In this scenario, switching to a lower frequency HF band increases the likelihood of capturing weak signals and maintaining contact, making it a strategic choice for improving communication when conditions on higher bands decline after sunset.

- 2. What type of license is needed to operate a beacon station?**
 - A. A technician license**
 - B. A valid amateur radio operator license that meets specific requirements**
 - C. A general class license only**
 - D. A special event license**

To operate a beacon station, a valid amateur radio operator license that meets specific requirements is necessary. Typically, this means that individuals must hold at least a General Class license or higher, which has the privileges to operate stations that can transmit in specific amateur bands. The operation of a beacon station is regulated and requires adherence to certain guidelines and standards set forth by the FCC (Federal Communications Commission). Beacon stations serve an important role in the amateur radio community by transmitting identifying signals and other information, such as propagation conditions. Recognizing the type of licenses and privileges associated with various amateur radio operations is crucial for anyone looking to engage in effective and legal communication practices. In contrast, a Technician license alone does not provide the necessary privileges for operating beacons as it limits access to certain frequency bands and modes, and a General Class license only would be encompassed under the broader category of "valid amateur radio operator license that meets specific requirements." A special event license is typically issued for temporary operations and is not aligned with the requirements for regular beacon operation.

3. What is a primary requirement for obtaining an Extra class amateur radio license?

- A. A basic understanding of FCC regulations**
- B. An understanding of advanced electronics and radio theory**
- C. Completion of a mentorship program**
- D. Passing a trade examination**

To obtain an Extra class amateur radio license, a deep understanding of advanced electronics and radio theory is a primary requirement. This level of knowledge is essential because the Extra class license grants operators access to all amateur radio frequencies and modes, along with more privileges compared to lower-class licenses. The Extra class examination covers topics that require a thorough grasp of complex concepts, including propagation, advanced circuit design, digital modes, and more nuanced aspects of radio operation and regulations. This requirement reflects the significant responsibility and operational capability that comes with the highest level of amateur radio licensing. While a basic understanding of FCC regulations is important for all amateur radio operators and mentorship programs can be beneficial in learning, these are not specific requirements for the Extra class. Additionally, passing a trade examination does not align with the structure of amateur radio licensing, as the examination focuses primarily on knowledge and understanding rather than vocational training. Hence, the emphasis on advanced electronics and radio theory is what distinguishes the requirements for the Extra class license.

4. What do the letters in a satellite's mode designator specify?

- A. Power limits for uplink and downlink transmissions**
- B. The location of the ground control station**
- C. The polarization of uplink and downlink signals**
- D. The uplink and downlink frequency ranges**

The letters in a satellite's mode designator specify the uplink and downlink frequency ranges used by the satellite for communication. This designation provides critical information about the frequencies assigned for transmitting signals from the ground station to the satellite (uplink) and from the satellite back to the ground station (downlink). Each satellite mode designator indicates whether the satellite is using VHF, UHF, or other frequency bands for these communications, ensuring operators know the proper frequencies to use for effective communication with the satellite. Understanding the function of these designators is essential for ham radio operators aiming to communicate via satellite, as it helps them select the correct frequencies for both transmitting to and receiving signals from the satellite. It is also important in planning and configuring amateur satellite operations, as mismatched frequencies can lead to ineffective communication or interference with other users.

5. What is the approximate bandwidth of a slow-scan TV signal?

- A. 600 Hz
- B. 3 kHz**
- C. 2 MHz
- D. 6 MHz

The bandwidth of a slow-scan TV (SSTV) signal is typically around 3 kHz. Slow-scan TV is a form of amateur radio that transmits images one frame at a time, and this mode is primarily designed for low-speed transmission, often used in situations where bandwidth is limited. The 3 kHz figure reflects the audio frequency range used to encode the image data, allowing the signal to maintain sufficient quality for the transmitted images, albeit at a slower rate compared to standard analog TV broadcasts. This bandwidth is significantly lower than that of traditional television signals, which can span several megahertz, emphasizing the essence of slow-scan TV as a method suited for amateur use where slower transmission speeds and lower bandwidth consumption are acceptable. The other choices present bandwidths that are more characteristic of different types of signals; for example, 600 Hz would be too narrow for image transmission, whereas 2 MHz and 6 MHz are more representative of bandwidths found in regular television broadcasts or other high-frequency services. Thus, the 3 kHz specification best captures the nature of slow-scan TV signals in amateur radio contexts.

6. Which mode of modulation is recommended for reliable data transfer in amateur radio?

- A. AM modulation
- B. FM modulation
- C. SSB modulation**
- D. PM modulation

Single Sideband (SSB) modulation is recommended for reliable data transfer in amateur radio primarily because of its efficient use of bandwidth and power. SSB removes one of the sidebands and the carrier wave from the AM signal, allowing for greater spectral efficiency. This means that SSB can transmit the same information as AM or FM while using significantly less bandwidth and power, which is crucial in amateur radio operations often characterized by limited resources. Additionally, SSB has better noise and interference resistance, which is advantageous during communication, especially under less-than-ideal conditions. This can lead to clearer signal reception and improved communication reliability over long distances. SSB is commonly used in voice communications as well as digital modes, where both the efficiency and the robustness of the signal are essential. In contrast, AM modulation is less efficient and more prone to interference because it transmits both sidebands and the carrier, utilizing more bandwidth. FM modulation, while providing good audio quality and is quite resilient to noise, operates better for voice communications and may not be as effective as SSB in signal clarity for data transfer. Phase Modulation (PM) is less commonly used in amateur radio for typical data transfer applications, making SSB the preferred choice.

7. Which of the following devices is commonly used for frequency monitoring?

- A. A band scope**
- B. A dipole antenna**
- C. A handheld transceiver**
- D. A signal generator**

A band scope is a device specifically designed for frequency monitoring. It provides a visual representation of the radio spectrum within a specified frequency range. This allows operators to observe and analyze signals as they are transmitted, aiding in the detection of active frequencies, identifying interference, and determining the bandwidth of signals in real-time. Band scopes are commonly used in both amateur and professional radio work to assist operators in tuning their equipment and optimizing their reception capabilities. Other options serve different purposes: a dipole antenna is primarily used for transmitting and receiving radio signals, not for monitoring frequencies. A handheld transceiver functions as a two-way communication device, allowing operators to transmit and receive, but it doesn't offer the analytical monitoring capabilities of a band scope. A signal generator produces signals for testing and calibration but does not monitor incoming frequencies. Therefore, the band scope stands out as the appropriate choice for frequency monitoring activities.

8. What is the legal power limit for Satellite Communication in the 1.2 GHz band?

- A. 500 watts EIRP**
- B. 1,000 watts EIRP**
- C. 1,500 watts EIRP**
- D. 2,000 watts EIRP**

The legal power limit for satellite communication in the 1.2 GHz band is indeed 1,000 watts EIRP (Effective Isotropic Radiated Power). This limit ensures efficient use of the frequency spectrum while minimizing potential interference with other services and users. EIRP is a critical measurement in satellite communications as it accounts for the power output of the transmitter as well as the gain provided by the antenna, which allows operators to effectively design their systems to comply with regulations. Maintaining this limit is essential because exceeding it could cause interference that negatively impacts both terrestrial and space-based receivers, which must operate reliably in this shared frequency range. This regulation is part of the broader governing framework established by the Federal Communications Commission (FCC) and international agreements to promote fair access to radio spectrum.

9. In what way can amateur radio support emergency management?

- A. By providing financial support to emergency responders
- B. By offering training programs for emergency personnel
- C. By offering backup communications when regular systems fail**
- D. By developing emergency management software

Amateur radio plays a crucial role in emergency management, particularly by providing backup communications when conventional communication systems become inoperable. During natural disasters or emergencies, such as hurricanes, earthquakes, or floods, public communication networks can become overwhelmed or damaged. Amateur radio operators are equipped with the necessary skills and equipment to establish communication quickly and reliably. This capability allows amateur radio operators to maintain contact between emergency response teams and agencies, relay important information, and coordinate rescue and relief efforts. Their ability to communicate over vast distances without relying on infrastructure makes them invaluable in situations where other forms of communication are compromised. In contrast, the other choices, while they may seem relevant, do not directly address the primary function of amateur radio in emergency scenarios. Financial support and training for emergency personnel are essential components of an overall emergency management strategy but do not directly involve the operational benefits of amateur radio. Similarly, developing emergency management software, while useful in modern emergency planning, falls outside the traditional scope of amateur radio's role, which is focused on communication rather than software development.

10. What is the function of an SWR meter?

- A. To measure voltage levels in transmissions.
- B. To determine the SWR in a feedline.**
- C. To amplify the received signal strength.
- D. To regulate power to the antenna.

The function of an SWR (Standing Wave Ratio) meter is to determine the SWR in a feedline. SWR is a crucial parameter in radio frequency systems as it measures the efficiency of power transfer from the transmitter through the feedline to the antenna. An ideal SWR reading is 1:1, which indicates that all the power is being radiated by the antenna. If the SWR is higher, it suggests that some power is being reflected back towards the transmitter, which can lead to inefficiencies and potentially damage the equipment. Regularly measuring the SWR helps operators ensure that their antennas are properly tuned and functioning, which is essential for effective communication and to maintain the longevity of their equipment.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://hamradio-extraclass.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE