

Graduate Management Admission Test (GMAT) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the strategy for analyzing whether two variables m and n are consecutive?**
 - A. Set m to be 2n**
 - B. Set m=n and n=m**
 - C. Set up equations $m=n+1$ or $m=n-1$**
 - D. Check if m equals n**
- 2. What formula is used to calculate the area of a trapezoid?**
 - A. $(1/2)(\text{sum of bases}) \times (\text{height})$**
 - B. $1/2 \times (\text{base} \times \text{height})$**
 - C. $(\text{base1} + \text{base2}) \times (\text{height}) / 2$**
 - D. $(\text{base1} + \text{base2}) \times (\text{height})$**
- 3. How is the sum defined for an average of a set of integers?**
 - A. Sum = (Maximum + Minimum)/2**
 - B. Sum = (Average)(Number of elements)**
 - C. Sum = (Number of elements)/2**
 - D. Sum = Maximum + Minimum**
- 4. What is the result when testing a 3-digit number for divisibility by 11?**
 - A. The units and hundreds should equal the tens**
 - B. The number must be even**
 - C. The sum of all digits should equal a multiple of 11**
 - D. Units should equal hundreds and tens**
- 5. Which of the following is a known right triangle with integer dimensions?**
 - A. 3:5:7**
 - B. 3:4:5**
 - C. 8:10:12**
 - D. 6:8:10**

6. What formula is used to calculate the area of a rectangle?

- A. Length + Width**
- B. Length - Width**
- C. Length x Width**
- D. Length / Width**

7. What is the sum of differences between each term and the average?

- A. 0**
- B. 1**
- C. It cannot be determined**
- D. Varies based on sample size**

8. In a scenario where the average of a set is needed, which component plays a critical role?

- A. The total number of elements**
- B. The highest number in the set**
- C. Every number in the set**
- D. The lowest number in the set**

9. What is the formula for the total number of elements in overlapping sets?

- A. Total = Group 1 + Group 2**
- B. Total = Group 1 + Group 2 - Both**
- C. Total = Group 1 + Group 2 - Both + Neither**
- D. Total = Group 1 + Group 2 + Neither**

10. Which of the following is true about permutations?

- A. Order does not matter**
- B. It involves arranging items**
- C. It is used for computing averages**
- D. It focuses on combinations**

Answers

SAMPLE

1. C
2. A
3. B
4. A
5. B
6. C
7. A
8. A
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. What is the strategy for analyzing whether two variables m and n are consecutive?

- A. Set m to be $2n$
- B. Set $m=n$ and $n=m$
- C. Set up equations $m=n+1$ or $m=n-1$**
- D. Check if m equals n

To determine whether two variables, m and n, are consecutive, the most effective approach is to set up equations that reflect the definition of consecutive integers. Consecutive integers differ by one unit; therefore, if one integer is represented by m and the other by n, they can be related through simple equations. Specifically, the equations $m = n + 1$ or $m = n - 1$ clearly indicate that either m is one more than n or m is one less than n. This captures the essence of what it means for two integers to be consecutive—there is an integer gap of exactly one between them. This technique allows you to directly ascertain their relationship and elegantly demonstrates whether they are indeed consecutive integers. By using these equations, you are explicitly testing for the condition that defines consecutive numbers, which is the primary goal of the analysis. This method is straightforward and effective, making it the best strategy for this purpose.

2. What formula is used to calculate the area of a trapezoid?

- A. $(1/2)(\text{sum of bases}) \times (\text{height})$**
- B. $1/2 \times (\text{base} \times \text{height})$
- C. $(\text{base1} + \text{base2}) \times (\text{height}) / 2$
- D. $(\text{base1} + \text{base2}) \times (\text{height})$

The formula used to calculate the area of a trapezoid is derived from its geometric properties. A trapezoid has two parallel sides, referred to as the bases, and a certain height, which is the perpendicular distance between these bases. To find the area, the formula involves summing the lengths of the two bases and then multiplying that sum by the height of the trapezoid. Specifically, the sum of the bases is divided by 2 to find the average length of the bases. When this average is then multiplied by the height, it effectively gives the area of the trapezoid. Thus, the formula is expressed as: $\text{Area} = (1/2)(\text{Base1} + \text{Base2}) \times \text{Height}$. This formula correctly captures the essence of how the lateral dimensions of the trapezoid contribute to its overall area. By ensuring that the bases are averaged, you obtain a single representative length that reflects the trapezoidal shape, which is then scaled by the height to find the complete area. This comprehensive understanding is crucial not only for solving geometry problems but also for practical applications in areas involving trapezoidal shapes, such as in architecture and engineering.

3. How is the sum defined for an average of a set of integers?

- A. Sum = (Maximum + Minimum)/2
- B. Sum = (Average)(Number of elements)**
- C. Sum = (Number of elements)/2
- D. Sum = Maximum + Minimum

The correct choice is derived from the fundamental relationship between the average of a set and the sum of its elements. The average of a set of integers is defined mathematically as the sum of all the integers divided by the number of integers in the set. To express the sum in terms of the average, one can rearrange the formula for the average: Average = Sum / Number of elements. Multiplying both sides by the number of elements, we arrive at the equation: Sum = Average \times Number of elements. This demonstrates that the sum of the integers in the set can be obtained by multiplying the average value by the total number of integers. In contrast, the other options relate to different mathematical concepts or give incorrect forms. For instance, calculating the average using maximum and minimum values can only provide a midpoint and doesn't accurately reflect the sum of integers in the set. Thus, understanding the basic relationship of average, sum, and the count of elements is essential for interpreting these concepts correctly.

4. What is the result when testing a 3-digit number for divisibility by 11?

- A. The units and hundreds should equal the tens**
- B. The number must be even
- C. The sum of all digits should equal a multiple of 11
- D. Units should equal hundreds and tens

When testing a 3-digit number for divisibility by 11, the correct approach involves checking the relationship between the digits in specific positions. The rule for divisibility by 11 states that a number is divisible by 11 if the difference between the sum of its digits in the odd positions and the sum of its digits in the even positions results in a number that is either 0 or a multiple of 11. For a 3-digit number structured as ABC, where A is the hundreds digit, B is the tens digit, and C is the units digit, we can apply the rule as follows: The digits in odd positions are A and C, while the digit in the even position is B. So, to determine if the number is divisible by 11, you would calculate (A + C) - B. The correct answer emphasizes that the units and hundreds digits (A and C) should be compared to the tens digit (B) to establish this relationship. If A plus C equals B, or the difference between these sums equals 0 or a multiple of 11, then the number is divisible by 11. This analysis confirms that the units and hundreds digits must relate to the tens digit for the number to meet the

5. Which of the following is a known right triangle with integer dimensions?

- A. 3:5:7
- B. 3:4:5**
- C. 8:10:12
- D. 6:8:10

A right triangle is defined by the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the lengths of the other two sides. This can be expressed as $a^2 + b^2 = c^2$, where c is the hypotenuse. In the case of the triangle with dimensions 3, 4, and 5: - The lengths are 3, 4, and 5. - To check if this is a right triangle, we calculate: $3^2 + 4^2 = 9 + 16 = 25$ $5^2 = 25$ Since both sums are equal, it confirms that the triangle with the dimensions 3, 4, and 5 is indeed a right triangle. The triangle with dimensions 3, 5, and 7 does not satisfy the Pythagorean theorem, as: $3^2 + 5^2 = 9 + 25 = 34 \neq$

6. What formula is used to calculate the area of a rectangle?

- A. Length + Width
- B. Length - Width
- C. Length x Width**
- D. Length / Width

The area of a rectangle is calculated using the formula that involves multiplying its length by its width. This mathematical principle works because a rectangle is defined by its two dimensions: the length (the longer side) and the width (the shorter side). When you multiply these two dimensions together, you determine how much two-dimensional space the rectangle occupies, which is represented in square units. Let's consider the other options to provide context. Adding the length and width does not give a meaningful measurement regarding area; instead, it results in a single dimension, which does not reflect the surface area. Subtracting the width from the length also does not yield a proper measurement of area, as it simply gives the difference between the two lengths. Dividing the length by the width calculates a ratio, which can provide information about the rectangle's proportions but not its area. Therefore, the multiplication of length and width is the correct and appropriate procedure for finding the area of a rectangle, confirming that it is indeed the correct answer.

7. What is the sum of differences between each term and the average?

- A. 0**
- B. 1**
- C. It cannot be determined**
- D. Varies based on sample size**

The sum of differences between each term in a set of data and the average of that set is always equal to zero. This is because the average (or mean) is defined as the sum of all the terms divided by the number of terms. When you calculate the difference between each term and the average, you are essentially measuring how far each term is from the mean. If you sum these differences, you are adding positive differences (from terms above the mean) and negative differences (from terms below the mean). Since each positive difference has a corresponding negative difference that balances it out, the total sum will always equal zero. For example, consider a simple set of numbers such as 2, 4, and 6. The average of these numbers is 4. The differences from the average are -2 (for 2), 0 (for 4), and +2 (for 6). When you sum these differences, you get $-2 + 0 + 2 = 0$. This concept applies regardless of the size of the sample; thus, the total will always remain zero, not varying based on the number of terms in the set.

8. In a scenario where the average of a set is needed, which component plays a critical role?

- A. The total number of elements**
- B. The highest number in the set**
- C. Every number in the set**
- D. The lowest number in the set**

In determining the average of a set, the critical component is every number in the set. The average is calculated by summing all the elements and then dividing that sum by the total number of elements in the set. This means that each individual number contributes to the total sum, which is essential for calculating the average accurately. While the total number of elements is indeed important, it is the inclusion of every number that allows for the correct calculation of the average. The formula for the average directly incorporates both the sum of all numbers and the total count of numbers, highlighting the significance of every element in the set. Thus, focusing solely on the total number of elements without taking into account all the individual values would not yield a representative average. Each number impacts the outcome, making it vital for the average calculation.

9. What is the formula for the total number of elements in overlapping sets?

- A. Total = Group 1 + Group 2
- B. Total = Group 1 + Group 2 - Both
- C. Total = Group 1 + Group 2 - Both + Neither**
- D. Total = Group 1 + Group 2 + Neither

Understanding the total number of elements in overlapping sets is crucial for solving problems in probability and statistics. When you have two groups that share some members, calculating the total can be tricky due to the duplication of those shared members. The formula for the total number of elements in overlapping sets is constructed by combining the individual counts of each group, which represent unique members of each group. However, to avoid counting the individuals who are part of both groups twice, you must subtract the number of elements that belong to both groups. Additionally, it's important to account for individuals who do not belong to either group, represented in this case as 'Neither.' By adding 'Neither' back to the total, you ensure that every possible element in the scenario is counted accurately. Thus, the correct formulation of the total number of elements encompasses the number of unique members from both groups, reduces the count by those included in both groups to eliminate duplicates, and finally adds in those who do not belong to either set, ensuring a comprehensive total is reached.

10. Which of the following is true about permutations?

- A. Order does not matter
- B. It involves arranging items**
- C. It is used for computing averages
- D. It focuses on combinations

Permutations specifically pertain to the arrangement of items where the order of the items is significant. This is a fundamental characteristic that distinguishes permutations from combinations. In permutations, rearranging the same items produces different outcomes, reflecting the importance of the sequence in which the items are arranged. For example, arranging the letters A, B, and C in various sequences results in different permutations, such as ABC and ACB. This highlights how permutations focus exclusively on the arrangement aspect. The other choices fail to align with the principle of permutations. "Order does not matter" refers to combinations rather than permutations, where the sequence of items is irrelevant. The assertion that permutations are used for computing averages does not hold, as permutations deal with arrangement rather than mathematical operations like averaging. Furthermore, while permutations and combinations are related concepts in combinatorics, saying that permutations focus on combinations misrepresents their definitions; rather, permutations are about ordered arrangements, while combinations involve selecting items without regard to order.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://gmat.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE