

Georgia Drinking Water Laboratory Analyst Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. What type of filter is used in the Total Suspended Solids (TSS) procedure?

- A. Paper filter of 1.0 um nominal pore size**
- B. Glass fiber filter of 2.0 um nominal pore size**
- C. Synthetic filter of 5.0 um nominal pore size**
- D. Cellulose nitrate filter of 0.45 um nominal pore size**

2. In what units is turbidity expressed?

- A. Parts per million**
- B. Milligrams per liter**
- C. Nephelometric Turbidity Units**
- D. Standard Units**

3. How many grams of KCl are needed to create 1.5 liters of a 3M solution?

- A. 74 grams**
- B. 222 grams**
- C. 333 grams**
- D. 444 grams**

4. What is the hold time for samples analyzed for specific conductance?

- A. 14 days**
- B. 28 days**
- C. 21 days**
- D. 30 days**

5. What broth is used during the presumptive stage of the MPN test for total coliform?

- A. Nutrient broth**
- B. Lauryl tryptose broth**
- C. Vegetable broth**
- D. Yeast extract broth**

6. Volumetric glassware is typically calibrated at what temperature?

- A. 25 Celsius
- B. 15 Celsius
- C. 20 Celsius
- D. 30 Celsius

7. What alcohol concentration is used to sterilize forceps in the membrane filter test for total coliform?

- A. 70% isopropyl alcohol
- B. 95% ethyl alcohol
- C. 100% isopropyl alcohol
- D. 50% methyl alcohol

8. What is the purpose of enhanced coagulation in water treatment?

- A. To increase pH levels
- B. To improve the removal of disinfection byproduct precursors
- C. To reduce water temperature
- D. To add minerals to the water

9. Which class of fire extinguisher is recommended for an electrical fire?

- A. Class A
- B. Class B
- C. Class C
- D. Class D

10. What is a composite sample?

- A. A single sample collected from different locations
- B. A mixture of discrete samples collected at different times
- C. A sample preserved at cold temperatures
- D. A sample that has been filtered

Answers

SAMPLE

1. B
2. C
3. C
4. B
5. B
6. C
7. B
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. What type of filter is used in the Total Suspended Solids (TSS) procedure?

- A. Paper filter of 1.0 um nominal pore size
- B. Glass fiber filter of 2.0 um nominal pore size**
- C. Synthetic filter of 5.0 um nominal pore size
- D. Cellulose nitrate filter of 0.45 um nominal pore size

The Total Suspended Solids (TSS) procedure typically employs a glass fiber filter with a nominal pore size of 2.0 micrometers. This choice is optimal for several reasons. Firstly, glass fiber filters are particularly effective at capturing a wide range of particulate matter suspended in water, which is essential for accurately measuring TSS. They provide high flow rates while maintaining an adequate level of filtration, allowing for the efficient collection of solids without excessive waiting times during the process. Furthermore, the 2.0 micrometer pore size strikes a balance between allowing smaller particles to pass through while capturing larger particulate matter, which is critical for assessing water quality. Using filters that are either too fine or too coarse might result in inaccurate measurements of suspended solids, thus affecting the final analysis. In comparison, filters with nominal pore sizes that are significantly smaller, such as 0.45 micrometers, would retain finer particulate matter and may not yield an accurate representation of total suspended solids, as they filter out some of the larger particles typically included in TSS assessments. Overall, the glass fiber filter with a 2.0 um pore size is tailored to the specific needs of the TSS procedure, ensuring both precision and efficiency in testing water samples

2. In what units is turbidity expressed?

- A. Parts per million
- B. Milligrams per liter
- C. Nephelometric Turbidity Units**
- D. Standard Units

Turbidity is expressed in Nephelometric Turbidity Units (NTU) because this unit is specifically designed to quantify the cloudiness or haziness of a liquid caused by large numbers of individual particles that are generally invisible to the naked eye. The measurement is based on the scattering of light, which is how turbidity is assessed in a laboratory setting. When light is passed through a sample, particles in the water scatter this light, and the amount of light scattered at a specific angle is measured to give a direct indication of turbidity. This method is standardized, making NTU a universally accepted unit for describing turbidity levels in water quality assessments. Other units like parts per million (ppm) or milligrams per liter (mg/L) are used for different types of substances or measurements in water, such as concentrations of solutes or contaminants but are not suitable for measuring turbidity effectively. Standard units may refer to different measurement systems and do not specifically define turbidity. Therefore, Nephelometric Turbidity Units are the correct and most specific measure for assessing water turbidity.

3. How many grams of KCl are needed to create 1.5 liters of a 3M solution?

- A. 74 grams**
- B. 222 grams**
- C. 333 grams**
- D. 444 grams**

To determine the number of grams of KCl required to create a 1.5-liter solution at a concentration of 3M, you'll need to follow these steps: First, the molarity (M) of a solution is defined as the number of moles of solute per liter of solution. Therefore, a 3M solution means there are 3 moles of KCl in every liter of solution. Next, calculate the total number of moles needed for 1.5 liters of a 3M solution: $3 \text{ moles/liter} \times 1.5 \text{ liters} = 4.5 \text{ moles of KCl}$. Now, you must convert moles into grams. The molar mass of KCl can be calculated using the atomic masses of potassium (K) and chlorine (Cl). Potassium has an atomic mass of approximately 39.1 g/mol, and chlorine has an atomic mass of about 35.5 g/mol. Therefore, the molar mass of KCl is: $39.1 \text{ g/mol} + 35.5 \text{ g/mol} = 74.6 \text{ g/mol}$. Now, multiply the number of moles by the molar mass to find the total grams: $4.5 \text{ moles} \times$

4. What is the hold time for samples analyzed for specific conductance?

- A. 14 days**
- B. 28 days**
- C. 21 days**
- D. 30 days**

The hold time for samples analyzed for specific conductance is established to ensure that the integrity and reliability of the sample data are maintained. A hold time of 28 days is specified as it allows for the preservation of the sample in conditions that minimize changes in the measurable properties of the water. This duration is aligned with the guidelines outlined by various regulatory agencies and laboratory standards, ensuring that any analyses performed reflect accurate and current conditions of the water source. It's essential to respect this hold time, as going beyond this period could lead to alterations in the sample's composition, which in turn could skew the results and lead to inaccurate conclusions about the water's specific conductance. Since specific conductance can be influenced by factors such as temperature and ion concentration over time, adhering to the 28-day hold time is crucial for maintaining data quality and supporting valid interpretations of the sampling results.

5. What broth is used during the presumptive stage of the MPN test for total coliform?

- A. Nutrient broth**
- B. Lauryl tryptose broth**
- C. Vegetable broth**
- D. Yeast extract broth**

The presumptive stage of the Most Probable Number (MPN) test for total coliforms utilizes Lauryl Tryptose Broth as it creates a selective environment that favors the growth of coliform bacteria while inhibiting the growth of competing organisms. This nutrient-rich broth contains tryptose, which provides amino acids, and lauryl sulfate, which acts as an inhibitory agent against many non-coliform organisms, ensuring that any gas production indicating coliform presence is more reliably attributed to coliform bacteria. In this stage, the fermentation of lactose present in the broth generates gas (indicated by a gas bubble in a Durham tube), which signifies the potential presence of coliforms. This makes Lauryl Tryptose Broth the appropriate choice for monitoring water quality and determining the presence of these bacteria, which are indicators of possible fecal contamination and the safety of drinking water. Other broths listed, such as nutrient broth, vegetable broth, and yeast extract broth, do not possess the specific selective properties necessary for the MPN test, which diminishes their effectiveness in this particular analytical context.

6. Volumetric glassware is typically calibrated at what temperature?

- A. 25 Celsius**
- B. 15 Celsius**
- C. 20 Celsius**
- D. 30 Celsius**

The correct response indicates that volumetric glassware is typically calibrated at 20 degrees Celsius. This standard calibration temperature is widely accepted in laboratory practices because it represents an optimal and consistent condition for measurements, taking into account the density and viscosity of liquids, which can vary with temperature. At 20 degrees Celsius, volumetric glassware, such as pipettes and volumetric flasks, achieves a balance that minimizes the effects of thermal expansion and ensures accuracy in the volume of liquids measured. Calibration at this temperature helps maintain uniformity and reliability in scientific measurements, which is crucial for obtaining precise results in laboratory analyses. Understanding the significance of the calibration temperature helps laboratory analysts ensure that measurements taken with this glassware are valid and consistent across different experiments and conditions. Therefore, being aware of the standard calibration temperature is essential for any laboratory work involving volumetric measurements.

7. What alcohol concentration is used to sterilize forceps in the membrane filter test for total coliform?

- A. 70% isopropyl alcohol**
- B. 95% ethyl alcohol**
- C. 100% isopropyl alcohol**
- D. 50% methyl alcohol**

The correct choice regarding the alcohol concentration used to sterilize forceps in the membrane filter test for total coliform is 70% isopropyl alcohol. This concentration is effective for disinfection and sterilization purposes because it contains a sufficient amount of water to slow down the evaporation rate of alcohol, allowing it to effectively penetrate and denature proteins within microorganisms, ultimately leading to cell death. In laboratory practices, isopropyl alcohol at 70% concentration is widely recognized as a standard for sterilization due to its optimal balance of efficacy, ease of use, and safety for both the user and the environment. Higher concentrations, such as 95% ethyl alcohol or 100% isopropyl alcohol, tend to evaporate too quickly, reducing their ability to effectively kill bacteria and viruses during contact. A lower concentration like 50% methyl alcohol is usually insufficient for sterilization and may not meet the necessary effectiveness required in labs to ensure safe handling of laboratory equipment.

8. What is the purpose of enhanced coagulation in water treatment?

- A. To increase pH levels**
- B. To improve the removal of disinfection byproduct precursors**
- C. To reduce water temperature**
- D. To add minerals to the water**

Enhanced coagulation is a critical process in water treatment aimed at improving the removal of disinfection byproduct precursors that can form during the disinfection process. This is particularly important for addressing organic substances in the water that can react with disinfectants, such as chlorine, to produce harmful byproducts like trihalomethanes and haloacetic acids. By optimizing the coagulation process, which involves the addition of coagulants to aggregate and remove suspended solids and organic material, the overall water quality is enhanced. This approach is designed to ensure that water treatment facilities can effectively manage and reduce the concentrations of these precursors, thereby improving the safety and quality of the drinking water while meeting regulatory standards. Enhanced coagulation often involves adjusting pH levels and coagulation conditions to target specific types of organic matter more efficiently, thus directly contributing to the goal of reducing potential health risks related to disinfection byproducts. The other options do not align with the primary objectives of enhanced coagulation: increasing pH levels does not directly relate to the removal of precursors; reducing water temperature is not a function of coagulation; and adding minerals, while sometimes a part of water treatment, does not relate to the enhanced coagulation process focused on organic matter removal.

9. Which class of fire extinguisher is recommended for an electrical fire?

- A. Class A
- B. Class B
- C. Class C**
- D. Class D

The recommended class of fire extinguisher for an electrical fire is Class C. This type of extinguisher is specifically designed to handle fires that involve electrical equipment and appliances. The extinguishing agents used in Class C extinguishers do not conduct electricity, making them safe to use on electrical fires without the risk of electric shock. In contrast, other classes of extinguishers are tailored for different types of fires. Class A is suitable for ordinary combustibles like wood and paper, Class B is used for flammable liquids and gases, and Class D is intended for fires involving combustible metals. Using the wrong type of extinguisher, especially on an electrical fire, can exacerbate the situation or lead to dangerous circumstances, such as the risk of electrocution. Therefore, Class C is the best choice for safely extinguishing electrical fires.

10. What is a composite sample?

- A. A single sample collected from different locations
- B. A mixture of discrete samples collected at different times**
- C. A sample preserved at cold temperatures
- D. A sample that has been filtered

A composite sample is defined as a mixture of discrete samples collected at different times or from different locations within a given area. This method allows for a more comprehensive assessment of the water quality by averaging the results of multiple samples, thereby minimizing the impact of any anomalies or fluctuations in water quality that may occur at a single point in time or location. In environmental and water quality testing, collecting composite samples is essential because it reflects the variability of contaminants or parameters over a specified period or across a geographical area. For instance, in monitoring the concentration of a pollutant, a composite sample will help in understanding the overall exposure rather than relying on the results from a single sample that may not represent typical conditions. The other choices highlight different sampling or preservation techniques, but they do not accurately define a composite sample. A single sample from different locations indicates samples taken at the same time rather than a mixture over time, a sample preserved at cold temperatures refers to specimen conservation methods, and a filtered sample relates to a process used to remove particulates from a sample prior to analysis. Each of these factors plays a role in water quality measurement but does not encompass the concept of a composite sample.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://gadrinkingwaterlabanalyst.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE