

General Motors Automotive Service Educational Program (GM ASE) Steering and Suspension Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the purpose of the pinch bolt in steering knuckle assemblies?**
 - A. To connect the lower control arm**
 - B. To secure the ball joint**
 - C. To hold the strut in place**
 - D. To adjust the steering angle**

- 2. What type of steering linkage adjustment can help correct steering issues?**
 - A. Toe adjustment**
 - B. Camber adjustment**
 - C. Caster adjustment**
 - D. All of the above**

- 3. Which of the following tests involves disconnecting the outer tie rod end and measuring the effort required to move the tie rod in the socket?**
 - A. Alternator output test**
 - B. Assembly test**
 - C. Articulation test**
 - D. Dry park test**

- 4. What consists of two yokes with a steel crosspiece joining them together?**
 - A. Spiral cable**
 - B. Tilt steering column**
 - C. Flexible coupling**
 - D. Universal joint**

- 5. Which component is often responsible for preventing excessive rear axle movement during acceleration?**
 - A. Control arm**
 - B. Torque arm**
 - C. Shock absorber**
 - D. Ball joint**

6. Which type of spring allows for vehicle height adjustment using air?

- A. Coil spring**
- B. Leaf spring**
- C. Air spring**
- D. Torsion spring**

7. Bump steer occurs when _____.

- A. when the front toe alignment is not within specifications**
- B. a vehicle hits a bump**
- C. when there is play in the steering linkage**
- D. the steering linkage is not level.**

8. Which component of a vehicle suspension primarily controls wheel damping?

- A. Springs**
- B. Shocks**
- C. Sway bars**
- D. Axles**

9. What kind of axle is typically used in high-performance rear-wheel-drive vehicles?

- A. Live axle**
- B. Independent axle**
- C. Composite axle**
- D. Semi-floating axle**

10. What is the relationship between road conditions and suspension tuning?

- A. Suspension is not affected by road conditions**
- B. Suspension must be tuned to optimize handling and comfort**
- C. Suspension tuning is only necessary in off-road vehicles**
- D. Road conditions improve without proper suspension tuning**

Answers

SAMPLE

1. B
2. D
3. C
4. D
5. B
6. C
7. D
8. B
9. A
10. B

SAMPLE

Explanations

SAMPLE

1. What is the purpose of the pinch bolt in steering knuckle assemblies?

- A. To connect the lower control arm**
- B. To secure the ball joint**
- C. To hold the strut in place**
- D. To adjust the steering angle**

The purpose of the pinch bolt in steering knuckle assemblies is to secure the ball joint. In many suspension designs, particularly MacPherson strut systems, the pinch bolt is used to clamp the ball joint into the steering knuckle, ensuring a tight and secure connection. This is critical for maintaining proper alignment and function of the vehicle's steering and suspension system. A properly secured ball joint allows for controlled movement and avoids any excess play that could lead to premature wear or failure of the suspension components. The other options do not accurately describe the role of the pinch bolt; it does not connect the lower control arm directly, hold the strut in place, or adjust the steering angle. Each of those functions is served by different components in the vehicle's suspension and steering system, underscoring the specific and vital role of the pinch bolt in maintaining the integrity of the ball joint connection.

2. What type of steering linkage adjustment can help correct steering issues?

- A. Toe adjustment**
- B. Camber adjustment**
- C. Caster adjustment**
- D. All of the above**

The appropriate answer is that all types of steering linkage adjustments—**toe, camber, and caster**—can influence the steering dynamics of a vehicle and help correct steering issues. Toe adjustment involves aligning the wheels to ensure they point straight ahead when the vehicle is moving. Incorrect toe settings can lead to steering pull, uneven tire wear, and degraded handling performance. By adjusting the toe, technicians can help achieve stable and predictable steering behavior. Camber adjustment refers to the angle of the wheels in relation to the vertical axis when viewed from the front or back of the vehicle. Proper camber is crucial for maintaining tire contact with the road and optimizing handling characteristics. If the camber is off, it can affect the vehicle's cornering abilities and cause uneven tire wear, leading to potential steering issues. Caster adjustment describes the angle of the steering pivot point, affecting steering effort and stability. Correct caster contributes to a self-centering effect in the steering wheel and stability during straight-line driving. An improper caster angle can lead to wandering or difficulty in steering return and alignment issues. Each of these adjustments plays a vital role in ensuring a vehicle's steering system operates correctly, and addressing any misalignments can enhance performance and safety. Therefore, recognizing that all three adjustments can aid

3. Which of the following tests involves disconnecting the outer tie rod end and measuring the effort required to move the tie rod in the socket?

- A. Alternator output test**
- B. Assembly test**
- C. Articulation test**
- D. Dry park test**

The correct choice identifies the articulation test, which specifically evaluates the movement and flexibility of suspension components, including the tie rod end. In this test, disconnecting the outer tie rod end and measuring the effort needed to move it within the socket assesses the condition of the tie rod and surrounding components. If the tie rod moves smoothly with minimal effort, it indicates that the bearings or bushings in the assembly are functioning correctly and there are no excessive wear or play issues. Conversely, if significant effort is required, it may suggest that there are problems such as binding, corrosion, or deterioration of the components, which could negatively affect steering performance and handling. Other tests mentioned, such as the alternator output test, focus on electrical system performance; the assembly test evaluates the integrity and fit of parts together; and the dry park test is generally used to examine suspension systems under static conditions without load. These different focuses highlight the importance of recognizing specific diagnostic methodologies relevant to each component of the steering and suspension system.

4. What consists of two yokes with a steel crosspiece joining them together?

- A. Spiral cable**
- B. Tilt steering column**
- C. Flexible coupling**
- D. Universal joint**

The correct choice refers to a universal joint, which is a critical component of many vehicle driveshafts. A universal joint consists of two yokes connected by a crosspiece, often referred to as a cross or trunnion. This design allows for the transfer of torque and rotational motion between two shafts that are not in a straight line or that are at different angles to each other. It effectively accommodates the required movement while maintaining the connection, making it essential in steering and suspension systems as well as in driveshaft assemblies. In contrast, a spiral cable is designed for steering systems that require a flexible connection for electrical signals, but it does not consist of yokes and a crosspiece. A tilt steering column allows the steering wheel to be adjusted for comfort and positioning but is not built from yokes or crosspieces. A flexible coupling does allow for some misalignment or movement between two components, but it does not feature yokes and a crosspiece arrangement as the universal joint does.

5. Which component is often responsible for preventing excessive rear axle movement during acceleration?

- A. Control arm**
- B. Torque arm**
- C. Shock absorber**
- D. Ball joint**

The torque arm plays a critical role in managing the movement of the rear axle during acceleration. It is specifically designed to withstand the torque generated by the engine and to limit the rear axle's rotational movement. As the vehicle accelerates, the rear axle tends to rotate upward due to the force being applied, which can lead to instability and unwanted vehicle dynamics. The torque arm helps to counteract this effect by anchoring the rear axle and maintaining proper alignment, ensuring that the power transfer from the engine to the wheels is effective while also preserving overall vehicle handling and ride quality. In contrast, the control arm primarily allows for vertical wheel movement and helps to connect the suspension components while attaching the wheel hub to the vehicle frame. The shock absorber is responsible for damping the oscillations of the suspension, providing a smoother ride, but does not directly manage axle rotational movement under acceleration. The ball joint serves as a pivotal connection point that allows for movement within the suspension system, facilitating the range of motion for the wheel but doesn't play a significant role in preventing rear axle motion during acceleration.

6. Which type of spring allows for vehicle height adjustment using air?

- A. Coil spring**
- B. Leaf spring**
- C. Air spring**
- D. Torsion spring**

The correct answer is the air spring, which is designed specifically to provide adjustable ride height and load-carrying capability by using air pressure. This flexibility is particularly advantageous for maintaining optimal ride quality and handling characteristics, especially in vehicles that may carry varying loads or require different heights for varying driving conditions. Air springs consist of an elastomeric material that forms an air-tight bag, which inflates or deflates to increase or decrease the spring rate and vehicle height. This allows for precise adjustments that can improve the performance and comfort of the vehicle. Coil springs, leaf springs, and torsion springs are more traditional types of springs that do not allow for height adjustments through air pressure. While they are effective in their own right for supporting the vehicle's weight and managing suspension travel, they lack the on-the-fly adjustability provided by air springs. Thus, while those options serve important functions, they do not offer the same level of versatility as air springs when it comes to adjusting vehicle height.

7. Bump steer occurs when _____.

- A. when the front toe alignment is not within specifications**
- B. a vehicle hits a bump**
- C. when there is play in the steering linkage**
- D. the steering linkage is not level.**

Bump steer occurs when the steering linkage is not level, which causes the vehicle's wheels to change direction unexpectedly when the suspension is compressed, such as when hitting a bump. In a properly aligned steering system, the toe angle—how the front wheels align with each other—remains consistent, even as the suspension moves up and down. However, if the steering linkage isn't level, the angles can change during suspension travel, leading to unintended steering inputs. This results in the driver feeling a tug on the steering wheel as the vehicle's wheels shift in response to road imperfections, which is exactly what bump steer is characterized by. Understanding this concept is crucial for diagnosing and correcting steering and suspension issues.

8. Which component of a vehicle suspension primarily controls wheel damping?

- A. Springs**
- B. Shocks**
- C. Sway bars**
- D. Axles**

The component of a vehicle suspension that primarily controls wheel damping is the shock absorber, often referred to simply as "shocks." The main function of shocks is to manage the movement of the springs and keep the tires in contact with the road surface. They achieve this by converting kinetic energy from the suspension's movement into thermal energy, dissipating it and preventing excessive oscillation. When the vehicle encounters a bump or dip, the springs compress and then release their energy to return to their original position. The shocks control the rate at which this happens, allowing for a smoother ride by minimizing the vertical movement of the vehicle body. Without shock absorbers, the springs would allow the vehicle to bounce excessively, leading to poor handling and ride quality. While springs do provide support and assist in absorbing some impacts, they are not responsible for damping motion. Sway bars enhance stability and reduce body roll during turns, but they do not play a role in damping. Axles are crucial for transferring power from the engine to the wheels and supporting the weight of the vehicle, but they do not influence damping characteristics either. Hence, shocks are essential for effective wheel damping and overall suspension performance.

9. What kind of axle is typically used in high-performance rear-wheel-drive vehicles?

- A. Live axle**
- B. Independent axle**
- C. Composite axle**
- D. Semi-floating axle**

A live axle is commonly used in high-performance rear-wheel-drive vehicles because it offers several advantages that align with the demands of such applications. This type of axle connects both rear wheels directly to a single housing, which provides increased strength and durability. The design allows for better power delivery to the wheels, which is essential in high-performance settings where effective traction and handling are critical. Additionally, live axles tend to be more straightforward in design, which can lead to less weight compared to other axle types, while also being able to support greater loads. This simplicity and strength make live axles particularly suitable for sports cars and other performance-oriented vehicles where optimal power transfer and handling are prioritized. In summary, the live axle's ability to provide strength, reliability, and efficient power transfer makes it the preferred choice for high-performance rear-wheel-drive vehicles.

10. What is the relationship between road conditions and suspension tuning?

- A. Suspension is not affected by road conditions**
- B. Suspension must be tuned to optimize handling and comfort**
- C. Suspension tuning is only necessary in off-road vehicles**
- D. Road conditions improve without proper suspension tuning**

Suspension tuning plays a crucial role in a vehicle's overall performance, particularly in relation to handling and ride comfort, both of which are heavily influenced by road conditions. When road surfaces are smooth, a base level of tuning can provide an excellent ride experience. However, when the roads are rough or uneven, proper suspension tuning becomes essential to absorb shocks, maintain tire contact with the road, and ensure stability. By adjusting factors such as spring rates, damping characteristics, and suspension geometry, suspension systems can be calibrated to respond effectively to varying road conditions. This ensures that a vehicle can handle imperfections in the road without compromising passenger comfort or vehicle control. Properly tuned suspension enhances traction and steering response while minimizing road noise and vibrations, ultimately leading to a more enjoyable driving experience. Choosing to overlook the relationship between suspension tuning and road conditions would lead to performance issues and a less comfortable ride, which reaffirms the necessity of tailored suspension settings based on expected driving conditions.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://gmasepsteeringsuspension.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE