

General Motors Automotive Service Educational Program (GM ASE) Steering and Suspension Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Which of the following best defines freeplay?**
 - A. Freeplay refers to the amount of movement of the steering wheel required to cause movement of the rear wheels.**
 - B. Freeplay refers to the amount of movement of the steering wheel required to cause movement of the front wheels.**
 - C. Freeplay refers to the amount of pressure applied on the front and rear wheels when driving on uneven surfaces.**
 - D. Freeplay refers to the amount of movement of the front wheels with respect to the rear wheels.**
- 2. Which tool is not recommended to be used to separate tapered steering components because it can do harm?**
 - A. Taper breaker**
 - B. Pickle fork**
 - C. Tie rod removal puller**
 - D. Two hammers**
- 3. A noise and a pull toward one side during braking indicate a problem with which component?**
 - A. Shock absorber**
 - B. Strut rod bushing**
 - C. Stabilizer bar link**
 - D. Track rod bushing**
- 4. What term describes the rear suspension component that supports load while allowing side-to-side movement?**
 - A. Rear leaf spring**
 - B. Control arm**
 - C. Shock absorber**
 - D. Axle**
- 5. What causes "radial tire pull" in vehicles?**
 - A. The angle of the body plies**
 - B. Bead design**
 - C. Tread design**
 - D. Tire conicity**

6. What is the likely consequence of worn ball joints on the vehicle's performance?

- A. Improved handling**
- B. Increased tire wear**
- C. Lower fuel efficiency**
- D. Better steering response**

7. Which indicator suggests that steering components might be worn or faulty?

- A. Unusual tire wear**
- B. A knocking or clunking noise when turning the wheel**
- C. Increased road noise**
- D. Steering wheel binding**

8. Which suspension component is crucial for absorbing shock from road irregularities?

- A. Control arm**
- B. Spring**
- C. Strut mount**
- D. Stabilizer bar**

9. What impact does lowering a car's suspension typically have?

- A. Increases ground clearance**
- B. Improves handling but may cause a harsher ride**
- C. Decreases fuel efficiency**
- D. Reduces tire traction**

10. Which of the following is a common symptom of a defective control arm bushing?

- A. suspension noise and handling**
- B. brake noise**
- C. noise when the vehicle is travelling at high speeds**
- D. noise and the vehicle stopping abruptly**

Answers

SAMPLE

1. B
2. B
3. B
4. A
5. D
6. B
7. B
8. B
9. B
10. A

SAMPLE

Explanations

SAMPLE

1. Which of the following best defines freeplay?

- A. Freeplay refers to the amount of movement of the steering wheel required to cause movement of the rear wheels.
- B. Freeplay refers to the amount of movement of the steering wheel required to cause movement of the front wheels.**
- C. Freeplay refers to the amount of pressure applied on the front and rear wheels when driving on uneven surfaces.
- D. Freeplay refers to the amount of movement of the front wheels with respect to the rear wheels.

Freeplay is defined as the amount of movement of the steering wheel that is necessary to create a corresponding movement in the front wheels. In a well-functioning steering system, there should be minimal freeplay, as excessive movement can indicate wear in the steering components, such as joints or linkages, which can lead to poor vehicle handling and responsiveness. When you turn the steering wheel, the goal is for that action to directly result in the movement of the front wheels, allowing the driver to maneuver the vehicle effectively. If there is a significant amount of freeplay, it may feel as though the vehicle is unresponsive or vague in steering feel, leading to potential safety issues. Understanding freeplay is essential for diagnosing steering system issues and ensuring that the vehicle's handling characteristics remain safe and predictable.

2. Which tool is not recommended to be used to separate tapered steering components because it can do harm?

- A. Taper breaker
- B. Pickle fork**
- C. Tie rod removal puller
- D. Two hammers

The correct answer is the pickle fork, as it is known to potentially cause damage when separating tapered steering components. A pickle fork is designed to wedge between components to create separation, which can lead to tearing or damaging the rubber boots on joints such as tie rods or ball joints. This damage can compromise the integrity of the component, leading to future failure and the need for replacement. In contrast, tools like a taper breaker are specifically engineered to separate tapered components safely without causing additional harm. Tie rod removal pullers are designed for the job without tearing or damaging surrounding components. Using two hammers can effectively help to separate parts without the risk of puncturing or tearing protective coverings, making them a safer choice compared to a pickle fork.

3. A noise and a pull toward one side during braking indicate a problem with which component?

- A. Shock absorber**
- B. Strut rod bushing**
- C. Stabilizer bar link**
- D. Track rod bushing**

A noise and a pull toward one side during braking often point to an issue with the strut rod bushing. The strut rod helps stabilize the vehicle during various maneuvers, including braking. If the bushing is worn or damaged, it can lead to misalignment of the suspension components, which in turn causes the vehicle to pull to one side when brakes are applied. Additionally, the noise associated with this issue may be due to metal-on-metal contact or excessive play caused by the degraded bushing. This can result in decreased stability and control, making it essential to address the problem promptly. While other components like shock absorbers, stabilizer bar links, and track rod bushings play crucial roles in the steering and suspension system, they typically do not manifest the same symptoms (noise and pulling) when they begin to fail as a strut rod bushing would.

4. What term describes the rear suspension component that supports load while allowing side-to-side movement?

- A. Rear leaf spring**
- B. Control arm**
- C. Shock absorber**
- D. Axle**

The term that describes the rear suspension component which supports load while allowing side-to-side movement is the rear leaf spring. Leaf springs are designed to support the weight of the vehicle while providing flexibility, which allows for lateral movement as the wheels encounter uneven surfaces. The leaf spring's layered structure provides both strength and the ability to absorb shocks, making it effective in maintaining ride quality and vehicle stability. In a typical vehicle suspension system, the rear leaf spring serves a dual purpose; it supports the vehicle body and maintains its height while also allowing for some independent movement of the wheels. This flexibility is crucial during cornering and dynamic driving situations where the wheels on either side may need to move independently to maintain contact with the road surface. Other components, such as control arms, primarily manage the wheel's vertical motion and alignment, shock absorbers control the oscillation of the springs but do not support the load directly, and axles transfer power and torque to the wheels rather than directly supporting the vehicle's weight in terms of suspension dynamics. Therefore, the rear leaf spring is specifically designed to meet the criteria outlined in the question, making it the correct choice.

5. What causes "radial tire pull" in vehicles?

- A. The angle of the body plies
- B. Bead design
- C. Tread design
- D. Tire conicity**

Radial tire pull is primarily caused by tire conicity, which refers to a slight cone shape in the tire construction that can lead to uneven contact with the road surface. When a tire has conicity, it will tend to pull to one side due to the way it interacts with the suspension and alignment of the vehicle. This pulling effect can be exacerbated by factors such as differences in tire pressures or even variations in tread wear. Tire conicity can result from manufacturing tolerances or defects, and its impact on vehicle handling can be significant, especially during straight-line driving. As the tire rotates, the conical shape can create an imbalanced force that makes the vehicle drift toward one direction. Correcting this issue might involve replacing the tire or sometimes rotating it to a different position on the vehicle to see if the pull changes. Understanding tire conicity is crucial in diagnosing steering and suspension problems, as it directly influences how tires perform together as a set. Proper identification of radial tire pull caused by this factor is essential for effective alignment and handling corrections.

6. What is the likely consequence of worn ball joints on the vehicle's performance?

- A. Improved handling
- B. Increased tire wear**
- C. Lower fuel efficiency
- D. Better steering response

Worn ball joints can lead to increased tire wear because they are critical components of the vehicle's suspension system that connect the control arms to the wheel hub. When ball joints wear out, they can cause excessive play or looseness in the wheel assembly, which can result in misalignment. This misalignment often leads to uneven tire wear, as the tires are not making proper contact with the road surface. Additionally, the wear in the ball joints can allow for a misalignment between the wheels, causing them to tilt and wear the tires unevenly on one side. The resulting tire wear is typically characterized by scalloping, cupping, or abnormal patterns on the tire surface, which can ultimately necessitate more frequent tire replacements or rotations to maintain proper handling and performance of the vehicle. Therefore, the connection between worn ball joints and increased tire wear is significant and directly impacts the overall performance and safety of the vehicle.

7. Which indicator suggests that steering components might be worn or faulty?

- A. Unusual tire wear**
- B. A knocking or clunking noise when turning the wheel**
- C. Increased road noise**
- D. Steering wheel binding**

A knocking or clunking noise when turning the wheel is a significant indicator that the steering components might be worn or faulty. This type of noise can originate from various steering components, such as tie rod ends, ball joints, or even the steering rack itself. When these parts begin to wear out, they may not secure themselves properly, leading to looseness and the resultant noise when the steering wheel is turned. This symptom is especially concerning because it suggests that the integrity of the steering system may be compromised, which can directly affect vehicle handling and safety. It's crucial for technicians to diagnose the source of the noise promptly to prevent further damage and ensure the vehicle operates safely. The other options, while potentially linked to steering or suspension issues, do not specifically indicate faulty steering components as clearly as the identified noise. Unusual tire wear can result from misalignment or suspension issues, increased road noise may be associated with numerous factors including tire condition or road surface, and steering wheel binding may indicate lubrication issues or other specific conditions, but none is as direct a warning of worn steering components as the noise described.

8. Which suspension component is crucial for absorbing shock from road irregularities?

- A. Control arm**
- B. Spring**
- C. Strut mount**
- D. Stabilizer bar**

The suspension component that plays a vital role in absorbing shock from road irregularities is the spring. Springs are designed to compress and expand in response to impacts from bumps, potholes, and other uneven surfaces. They help maintain vehicle stability and comfort by allowing the wheels to follow the contours of the road while minimizing the transmission of those shocks to the vehicle's chassis and occupants. When a vehicle encounters a bump, the spring compresses to absorb the energy generated by the impact. Once the bump has passed, the spring expands back to its original shape, helping to restore the vehicle's ride height. This operation is fundamental for maintaining proper tire contact with the road, ensuring good traction and overall handling. Control arms, strut mounts, and stabilizer bars each serve important functions in the suspension system, but they are not primarily responsible for shock absorption. Control arms connect the wheel hub to the vehicle's frame and allow for controlled motion. Strut mounts support the strut assembly, providing a pivot point for steering and load bearing. Stabilizer bars help reduce body roll during turns but do not absorb shocks in the same way that springs do. Therefore, the spring is essential for its primary function of absorbing shocks and maintaining ride quality.

9. What impact does lowering a car's suspension typically have?

- A. Increases ground clearance**
- B. Improves handling but may cause a harsher ride**
- C. Decreases fuel efficiency**
- D. Reduces tire traction**

Lowering a car's suspension typically improves handling due to the lower center of gravity achieved by bringing the chassis closer to the ground. This reduction can minimize the body roll during cornering, allowing for better stability and responsiveness when making turns. However, this alteration often results in a harsher ride quality. When the suspension is lowered, there is less vertical travel, which can lead to a stiffer ride as the suspension components have to absorb bumps on the road with less room for movement. The other choices do not accurately reflect the impacts of lowering a suspension. Ground clearance would be decreased rather than increased, and while lowering can sometimes lead to marginal improvements in fuel efficiency due to reduced aerodynamic drag, it is not directly associated with drastically decreasing fuel efficiency. Additionally, while there may be some effects on traction due to changes in weight distribution, lowering a vehicle mainly enhances handling rather than reducing tire traction, assuming the appropriate tires are used for the lowered setup.

10. Which of the following is a common symptom of a defective control arm bushing?

- A. suspension noise and handling**
- B. brake noise**
- C. noise when the vehicle is travelling at high speeds**
- D. noise and the vehicle stopping abruptly**

A defective control arm bushing typically leads to several noticeable symptoms that affect both the suspension system and the overall handling of the vehicle. Control arm bushings are designed to provide a flexible connection between the control arm and the vehicle frame, allowing for smooth movement while also isolating road noise and vibrations. When these bushings wear out or become damaged, they can produce clunking or rattling noises, particularly when the vehicle goes over bumps or during turns. Additionally, compromised bushings can affect the alignment of the wheels, leading to poor handling characteristics, such as wandering or a lack of steering response. These symptoms directly relate to the functions of the control arm assembly. In contrast, the other choices pertain to different systems or issues that do not directly stem from a malfunctioning control arm bushing. For instance, brake noise generally originates from the braking components themselves and is not influenced by the suspension system's control arm bushings. Similarly, noise at high speeds and issues related to abrupt stopping tend to point to concerns with different areas of the vehicle, such as tire problems or brake issues. Thus, the most consistent symptom associated with a defective control arm bushing is the combination of suspension noise and handling problems.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://gmasepsteeringsuspension.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE