

# General Genetics Exam 1

## Practice (Sample)

### Study Guide



**Everything you need from our exam experts!**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>5</b>  |
| <b>Answers</b> .....               | <b>8</b>  |
| <b>Explanations</b> .....          | <b>10</b> |
| <b>Next Steps</b> .....            | <b>16</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!**

## **Questions**

SAMPLE

- 1. Which of the following is NOT a characteristic of the garden pea?**
  - A. It has distinct varieties**
  - B. It can self-fertilize**
  - C. It does not produce seeds**
  - D. It is easy to control parental choices**
  
- 2. From which animal is the gene for Green Fluorescent Protein (GFP) derived?**
  - A. Sea anemone**
  - B. Starfish**
  - C. Jellyfish**
  - D. Cuttlefish**
  
- 3. What is the gene product associated with Vitamin D-resistant rickets?**
  - A. Metallopeptidase**
  - B. Methyl-CpG-binding protein-2**
  - C. NF-B essential modulator**
  - D. Unknown**
  
- 4. What is the structure that contains DNA in living cells?**
  - A. Nucleus**
  - B. Chromatin**
  - C. Chromosomes**
  - D. Ribosomes**
  
- 5. Were the camps among performanceists correct about their views on reproduction?**
  - A. Yes**
  - B. No**
  - C. Partially**
  - D. It depends on context**

**6. Androgen insensitivity syndrome is caused by the lack of which receptor?**

- A. Clotting factor VIII**
- B. Dystrophin**
- C. Androgen receptor**
- D. Insulin receptor**

**7. What term describes the process of obtaining pollen and egg from two different plants?**

- A. Self-fertilization**
- B. Cross-fertilization**
- C. Hybridization**
- D. Asexual reproduction**

**8. What is the name for the genetic condition characterized by an extra chromosome 21?**

- A. Turner syndrome**
- B. Down syndrome**
- C. Klinefelter syndrome**
- D. Huntington's disease**

**9. What term describes having two copies of each chromosome, one from each parent?**

- A. Haploid**
- B. Diploid**
- C. Monoploid**
- D. Polyploid**

**10. Which of the following diseases is associated with prions and is commonly known as "Mad Cow Disease"?**

- A. Kuru**
- B. Scrapie**
- C. Creutzfeldt-Jakob disease**
- D. Mad cow disease**

## **Answers**

SAMPLE

1. C
2. C
3. A
4. C
5. B
6. C
7. B
8. B
9. B
10. D

SAMPLE

## **Explanations**

SAMPLE

**1. Which of the following is NOT a characteristic of the garden pea?**

- A. It has distinct varieties**
- B. It can self-fertilize**
- C. It does not produce seeds**
- D. It is easy to control parental choices**

The garden pea, known scientifically as *Pisum sativum*, has several distinctive features that make it an excellent model organism for studying inheritance. One notable characteristic is that it does produce seeds, which are crucial for studies of genetic traits. The ability to produce seeds allows for the observation of phenotypic variations across generations, which is fundamental in genetic experiments. In addition to its seed production, the garden pea has distinct varieties, meaning there are different kinds that exhibit specific traits, such as flower color or seed shape. This diversity allows for a variety of genetic combinations to be tested. The plant's ability to self-fertilize ensures a controlled breeding environment, which facilitates the study of inheritance patterns without external genetic contributions. Moreover, the ease with which researchers can control parental choices in breeding experiments further enhances its utility in genetic research. Hence, indicating that the garden pea does not produce seeds is inaccurate, as this characteristic is essential for its role in genetics.

**2. From which animal is the gene for Green Fluorescent Protein (GFP) derived?**

- A. Sea anemone**
- B. Starfish**
- C. Jellyfish**
- D. Cuttlefish**

The gene for Green Fluorescent Protein (GFP) is derived from the jellyfish *\*Aequorea victoria\**. This protein exhibits fluorescence and has become a vital tool in molecular biology and genetics for visualizing proteins and cellular processes. The discovery of GFP in jellyfish was significant because it enabled researchers to utilize this naturally occurring fluorescence for tagging and imaging cellular structures in live organisms. The properties of GFP, such as its ability to be expressed in a wide range of organisms, enhance its utility in various scientific applications. This innovative use of a naturally occurring protein highlights the connection between biological research and the unique traits found in different marine species.

### 3. What is the gene product associated with Vitamin D-resistant rickets?

- A. Metallopeptidase**
- B. Methyl-CpG-binding protein-2**
- C. NF-B essential modulator**
- D. Unknown**

Vitamin D-resistant rickets, also known as hypophosphatemic rickets, is primarily associated with mutations in the PHEX gene. The gene product from the PHEX gene is a metalloproteinase, which plays a critical role in phosphate regulation. This dysfunction leads to impaired phosphate reabsorption in the kidneys and bones, causing the characteristic rickets symptoms. The association with metalloproteinases is significant because they are involved in the metabolism of proteins and the regulation of bone mineralization. The specific metallopeptidase that is linked to rickets affects how phosphorus is processed in the body, highlighting the importance of this enzyme in maintaining proper mineral balance. The other options listed do not directly relate to Vitamin D-resistant rickets. Methyl-CpG-binding protein-2 and NF-B essential modulator have distinct roles in gene regulation and immune response, respectively, and are not implicated in the pathophysiology of rickets. The designation of "unknown" would imply a lack of understanding about the genetic factors involved, which is not the case here, as the connection between the relevant metallopeptidase and rickets is well-established. Thus, the correct choice reflects the actual genetic basis responsible for this condition.

### 4. What is the structure that contains DNA in living cells?

- A. Nucleus**
- B. Chromatin**
- C. Chromosomes**
- D. Ribosomes**

The structure that contains DNA in living cells is most accurately identified as the nucleus. The nucleus serves as the cellular compartment where the genetic material is housed and organized within eukaryotic cells. Within the nucleus, DNA is present in a form that is largely uncoiled and combined with proteins, called chromatin. When a cell prepares to divide, the chromatin condenses into structures known as chromosomes, which are the physical carriers of genes. Although ribosomes are essential cellular machinery for protein synthesis, they do not house DNA. Instead, they interpret the genetic instructions carried by messenger RNA (mRNA) to produce proteins. In summary, while chromatin and chromosomes are forms of DNA organization within the nucleus, the most complete and encompassing answer to where DNA is contained in living cells is the nucleus itself, as it is the designated storage site for the cell's entire genetic information.

**5. Were the camps among performanceists correct about their views on reproduction?**

- A. Yes**
- B. No**
- C. Partially**
- D. It depends on context**

The view of performanceists in the context of reproduction is that they believed organisms developed from preformed tiny individuals, or "homunculi," that existed within the sperm or egg. This concept contradicts our modern understanding of reproduction, which is based on cellular division and the fertilization process leading to a zygote that develops and differentiates into various cell types over time. Current genetics emphasizes the role of genes and environmental factors in development, and we understand that traits and characteristics emerge through complex interactions rather than being pre-formed. The observations and theories put forth by performanceists have been thoroughly disproven by advances in genetics, cellular biology, and developmental biology. Therefore, stating that the performanceists were correct about their views on reproduction is inaccurate based on contemporary scientific knowledge.

**6. Androgen insensitivity syndrome is caused by the lack of which receptor?**

- A. Clotting factor VIII**
- B. Dystrophin**
- C. Androgen receptor**
- D. Insulin receptor**

Androgen insensitivity syndrome (AIS) results from a mutation in the androgen receptor gene. The androgen receptor is crucial for the normal functioning of androgens, which are male sex hormones like testosterone. In individuals with AIS, the body produces androgens, but the cells cannot respond to these hormones due to the dysfunctional or absent androgen receptors. As a result, despite having male XY chromosomes, individuals develop female external characteristics and secondary sexual traits. This condition illustrates the importance of the androgen receptor in sexual development and differentiation. The other choices relate to different bodily functions and disorders unrelated to the mechanisms of androgen insensitivity syndrome. Clotting factor VIII is involved in blood coagulation, dystrophin is important for muscle function, and the insulin receptor facilitates glucose uptake and metabolism. None of these are implicated in androgen insensitivity syndrome, focusing on how the lack of a functional androgen receptor leads to the syndrome's symptoms.

**7. What term describes the process of obtaining pollen and egg from two different plants?**

- A. Self-fertilization**
- B. Cross-fertilization**
- C. Hybridization**
- D. Asexual reproduction**

The term that describes the process of obtaining pollen and egg from two different plants is cross-fertilization. This process involves the transfer of pollen from the male gametes of one plant to the female gametes of another plant, leading to fertilization and the formation of seeds. Cross-fertilization is important for increasing genetic diversity, as it allows for the mixing of genetic material from different parent plants. In contrast, self-fertilization refers to the fertilization process where a plant's own pollen fertilizes its own eggs, resulting in offspring genetically similar to the parent. Hybridization, while closely related to cross-fertilization, specifically refers to the mating of individuals from different species or genetically distinct populations, often resulting in hybrids that exhibit characteristics of both parents. Asexual reproduction is a different mechanism entirely, as it involves a single organism producing offspring without the involvement of gametes, leading to offspring that are genetically identical to the parent.

**8. What is the name for the genetic condition characterized by an extra chromosome 21?**

- A. Turner syndrome**
- B. Down syndrome**
- C. Klinefelter syndrome**
- D. Huntington's disease**

The genetic condition characterized by an extra chromosome 21 is known as Down syndrome. This condition, also referred to as trisomy 21, occurs when an individual inherits three copies of chromosome 21 instead of the usual two. This extra genetic material disrupts the normal course of development, leading to a range of physical and intellectual disabilities. Individuals with Down syndrome often exhibit distinct physical traits such as a flat facial profile, slanted eyes, and a single transverse palmar crease. Additionally, they may experience various health issues including heart defects and increased susceptibility to certain medical conditions. Early intervention and educational support can significantly enhance the quality of life for those with Down syndrome. In contrast, the other options refer to different genetic conditions. Turner syndrome involves a missing or incomplete X chromosome and primarily affects females, while Klinefelter syndrome is associated with an extra X chromosome in males. Huntington's disease is a neurodegenerative disorder caused by a specific genetic mutation, unrelated to chromosomal abnormalities like those seen in Down syndrome.

**9. What term describes having two copies of each chromosome, one from each parent?**

- A. Haploid**
- B. Diploid**
- C. Monoploid**
- D. Polyploid**

Having two copies of each chromosome, one inherited from each parent, is described as diploid. This is a characteristic of somatic cells in many organisms, including humans, where the normal chromosome number is represented as  $2n$ . In diploid organisms, the pairs of chromosomes consist of homologous chromosomes, which are similar in structure and size but can carry different versions of a gene, known as alleles. In contrast, haploid refers to cells that contain only one complete set of chromosomes, such as gametes (sperm and eggs) in sexually reproducing organisms, represented as  $n$ . Monoploid is sometimes used interchangeably with haploid, emphasizing a single set of chromosomes especially in the context of gamete formation. Polyploid refers to organisms or cells that have more than two sets of chromosomes, which is common in certain plants and can result in increased genetic variation and adaptation. Understanding these terms is fundamental to grasping concepts related to cell division and inheritance in genetics.

**10. Which of the following diseases is associated with prions and is commonly known as "Mad Cow Disease"?**

- A. Kuru**
- B. Scrapie**
- C. Creutzfeldt-Jakob disease**
- D. Mad cow disease**

Mad Cow Disease, scientifically referred to as Bovine Spongiform Encephalopathy (BSE), is indeed the disease associated with prions. Prions are misfolded proteins that can induce abnormal folding of normal cellular proteins, leading to a cascade of detrimental effects in neural tissue. In the case of Mad Cow Disease, it primarily affects cattle, leading to neurodegeneration and, consequently, severe neurological symptoms and death. The disease can be transmitted to humans through the consumption of infected beef products, resulting in a variant of Creutzfeldt-Jakob disease, which highlights the significant implications of prion diseases for both animal and human health. The other choices represent different prion diseases but are not referred to as Mad Cow Disease. Kuru is associated with human cannibalistic practices, Scrapie affects sheep, and Creutzfeldt-Jakob disease is a similar prion disease that occurs in humans but is distinct from Mad Cow Disease. Understanding the specificity of these terminologies is essential in the study of prion-related diseases.

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://gengenetics1.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**