General B Contractor Trade Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. How far down must you clear roots and stumps before pouring a slab foundation?
 - A. 6 inches
 - **B.** 9 inches
 - C. 12 inches
 - D. 15 inches
- 2. What is the most important safety step when using a welding torch?
 - A. No oil
 - B. Using a fire extinguisher
 - C. Wearing gloves
 - D. Secure workspace
- 3. In which direction do hip jack rafters run?
 - A. At an angle to the common rafters
 - B. Perpendicular to the common rafters
 - C. Parallel to common rafters
 - D. Vertical from the ridge to the eaves
- 4. What type of device can determine if there is a loaded balance on an electrical panel?
 - A. Multimeter
 - **B.** Volt meter
 - C. Amp probe
 - D. Circuit tester
- 5. What is one key characteristic of greenboard?
 - A. It is waterproof
 - B. It is fire-resistant
 - C. It is used for ceilings
 - D. It is only used in kitchens

- 6. Which of the following is correct about boring at the ends of joists?
 - A. Must be 1" from the edge
 - B. Must be at least 1.5" from the edge
 - C. Must be at least 2" from the top or bottom
 - D. Can be done anywhere along the length
- 7. Which is the most effective way to ensure the structural integrity of a beam?
 - A. Increased width
 - **B. Properly placed supports**
 - C. Using a heavier material
 - D. Wider spacing of supports
- 8. To test soil before installing a septic tank, you should contact?
 - A. A general contractor
 - B. A soil geologist
 - C. A civil engineer
 - D. A licensed plumber
- 9. What is the minimum distance from the centerline of a toilet to the nearest wall?
 - A. 12 inches
 - B. 15 inches
 - C. 17 inches
 - D. 20 inches
- 10. What is the primary consideration when assessing a building site and drainage?
 - A. Soil type and strata
 - B. Climate and weather patterns
 - C. Drainage needed for a new structure
 - D. Proximity to existing infrastructure

Answers

- 1. C 2. A 3. C 4. C 5. A 6. C 7. B 8. B 9. C 10. C

Explanations

1. How far down must you clear roots and stumps before pouring a slab foundation?

- A. 6 inches
- B. 9 inches
- C. 12 inches
- D. 15 inches

When preparing to pour a slab foundation, it is essential to clear roots and stumps to a depth of 12 inches. This practice is crucial for several reasons. Firstly, removing vegetation and organic material, such as roots and stumps, helps to prevent future settling of the slab, which can occur as these materials decompose over time. Decomposing materials can create gaps within the soil beneath the foundation, leading to instability. Additionally, clearing to this depth helps ensure that the concrete has a solid and stable base for support. Soil compaction is more effective when there is no organic material present, allowing the concrete to withstand loads without shifting or cracking. Thus, clearing down to 12 inches provides the necessary assurance that the slab will rest on a firmly compacted subgrade, enhancing the long-term durability and integrity of the foundation.

2. What is the most important safety step when using a welding torch?

- A. No oil
- B. Using a fire extinguisher
- C. Wearing gloves
- D. Secure workspace

When using a welding torch, the most important safety step is to ensure that there is no oil present in the workspace. This is crucial because welding involves high temperatures that can ignite flammable substances. Oil and other combustible materials can easily catch fire, leading to dangerous situations, including fires and explosions. Maintaining a clean workspace free from any oils or flammable liquids minimizes the risk of ignition, making it the top priority for safety. By ensuring that your area is clear of these materials, you create a safer environment for performing welding tasks. Other safety measures, such as wearing gloves, using a fire extinguisher, and ensuring a secure workspace, are important and contribute to overall safety, but they do not address the immediate risk posed by the presence of flammable materials.

3. In which direction do hip jack rafters run?

- A. At an angle to the common rafters
- B. Perpendicular to the common rafters
- C. Parallel to common rafters
- D. Vertical from the ridge to the eaves

Hip jack rafters are designed to connect the ridge of the roof to the hip of the structure. They run at an angle to the common rafters, creating the necessary slope for a hip roof. However, they are not merely angled like other rafters; they run parallel to the common rafters, albeit at an incline that corresponds to the roof pitch. This parallel configuration allows hip jack rafters to work effectively with both the common rafters and other structural components of the roof, ensuring proper weight distribution and structural integrity. In contrast, hip jack rafters do not run perpendicular to the common rafters or vertically from the ridge to the eaves, illustrating why the other options do not accurately describe their orientation. Understanding the positioning and function of hip jack rafters is essential for proper roof framing and design.

4. What type of device can determine if there is a loaded balance on an electrical panel?

- A. Multimeter
- **B.** Volt meter
- C. Amp probe
- D. Circuit tester

A device that can determine if there is a loaded balance on an electrical panel is the amp probe. This tool measures the amount of current flowing through a conductor, allowing electricians to assess load distribution across different circuits within the panel. By examining the current readings for each circuit, a technician can identify which circuits may be overloaded or unbalanced compared to others, ensuring that the electrical system operates safely and efficiently. A multimeter, while versatile and capable of measuring voltage, current, and resistance, is typically used for more general electrical diagnostics rather than specifically assessing load balance in panels. A volt meter primarily measures voltage and would not provide information regarding the current, which is crucial for evaluating load. A circuit tester checks for the presence of voltage but does not measure the actual load being carried by the circuit, making it insufficient for determining balance in the electrical panel.

5. What is one key characteristic of greenboard?

- A. It is waterproof
- B. It is fire-resistant
- C. It is used for ceilings
- D. It is only used in kitchens

Greenboard, commonly known as moisture-resistant gypsum board, is specifically designed for areas where moisture is present, such as bathrooms and kitchens. The key characteristic of greenboard is that it is waterproof, which means it has a special coating that helps it resist water damage and mold growth better than standard drywall. While it is not completely waterproof and cannot be used in areas that are submerged in water, its moisture-resistant properties make it suitable for high-humidity environments. It's important to understand that although greenboard offers better moisture resistance compared to regular drywall, it is not intended for use in locations with direct, continuous water exposure, such as shower enclosures. Greenboard's properties make it a popular choice for areas that require durability against moisture without being fully waterproof, setting it apart from other materials used in construction.

6. Which of the following is correct about boring at the ends of joists?

- A. Must be 1" from the edge
- B. Must be at least 1.5" from the edge
- C. Must be at least 2" from the top or bottom
- D. Can be done anywhere along the length

Boring at the ends of joists is subject to specific guidelines to maintain the structural integrity and load-bearing capacity of the joists. When the correct practice is to ensure that the boring is at least 2 inches from the top or bottom, it prevents weakening the joist. This distance helps to maintain enough material around the bored area, which is crucial for transferring loads properly and reducing the risk of failure or compromise of the joist under stress. By adhering to this requirement, contractors can ensure the stability and safety of the structure being built. Distancing the boring from the edges also minimizes the likelihood of splitting and protects against issues that can arise from load distribution changes. Understanding these specifications is vital for contractors to comply with building codes and ensure safe construction practices.

7. Which is the most effective way to ensure the structural integrity of a beam?

- A. Increased width
- **B. Properly placed supports**
- C. Using a heavier material
- D. Wider spacing of supports

To ensure the structural integrity of a beam, properly placed supports play a critical role. Supports serve as the foundation points for a beam, absorbing loads and distributing weight effectively across the structure. The strategic placement of these supports can prevent excessive bending, sagging, or twisting of the beam under load conditions. Placing supports at calculated intervals or positions based on load-bearing requirements ensures that the beam can maintain its structural integrity over time. This distribution of loads helps mitigate points of weakness, leading to enhanced durability and safety in construction. In contrast, while increasing the width of a beam, using a heavier material, or opting for wider spacing of supports can have some benefit, these methods may not address the fundamental aspect of load distribution and stability that properly placed supports provide. Wider spacing, for example, can lead to greater stress on the beam between supports, potentially compromising its integrity. Therefore, the most effective way to ensure a beam's structural integrity is through accurate placement of supports, ensuring they match the design load requirements and load path.

8. To test soil before installing a septic tank, you should contact?

- A. A general contractor
- B. A soil geologist
- C. A civil engineer
- D. A licensed plumber

Contacting a soil geologist to test soil before installing a septic tank is essential because they possess specialized knowledge about soil composition, structure, and its suitability for various purposes, including septic tank installation. Soil geologists analyze soil samples to determine drainage capabilities, percolation rates, and potential contamination issues, which are critical factors for the effective functioning of a septic system. Selecting the appropriate site for a septic tank relies heavily on the soil's physical and chemical properties. A soil geologist can provide insights into the soil's behavior under different conditions, helping to ensure that the septic system is designed to operate correctly and minimize environmental impact. While general contractors, civil engineers, and licensed plumbers have valuable roles in construction and plumbing, they typically do not have the specific training or expertise in soil analysis required for this task. General contractors manage projects, civil engineers focus on infrastructure and site design, and plumbers specialize in water systems rather than soil evaluation. Hence, a soil geologist is the most qualified professional for this type of assessment.

- 9. What is the minimum distance from the centerline of a toilet to the nearest wall?
 - A. 12 inches
 - B. 15 inches
 - C. 17 inches
 - D. 20 inches

The correct answer is based on building codes and plumbing standards that dictate the required clearance for toilet installations. The minimum distance from the centerline of a toilet to the nearest wall is commonly cited as 15 inches in many plumbing codes. However, the specify distance for certain contexts can vary slightly depending on specific regulations. In some areas, the typical guideline is to maintain a distance of at least 17 inches for optimal comfort and accessibility, allowing enough space for users and ensuring that any installed grab bars or other ADA (Americans with Disabilities Act) compliant features can be utilized effectively. This is particularly relevant in spaces designed for accessibility or where larger fixtures might be used. It is important to be aware that codes can have specific requirements that ensure both functionality and comfort, and while 12 inches is often seen in requirements for clearances, it does not offer the additional comfort and maneuverability that experienced professionals consider essential in practical applications. In summary, selecting a distance of 17 inches aligns with many building regulations and best practices, ensuring adequate space for both usability and accessibility around toilet facilities.

- 10. What is the primary consideration when assessing a building site and drainage?
 - A. Soil type and strata
 - B. Climate and weather patterns
 - C. Drainage needed for a new structure
 - D. Proximity to existing infrastructure

The primary consideration when assessing a building site and drainage is whether the site has adequate drainage to accommodate a new structure. Effective drainage is crucial to prevent water accumulation, which can lead to various issues such as flooding, soil erosion, and structural damage. Proper drainage design must take into account the intended use of the building, the surrounding landscape, and local regulations to ensure that water is redirected away from the foundation and other critical areas. While soil type and strata, climate and weather patterns, and proximity to existing infrastructure are also important factors in site assessment, they serve as secondary considerations in the context of drainage. For instance, soil type can influence drainage characteristics but is assessed after determining drainage needs. Similarly, knowing the climate helps predict drainage requirements but does not directly address the design of the drainage system for the new structure. Proximity to existing infrastructure can facilitate drainage options but remains less critical than ensuring the site is suitably drained for the proposed development.