

FTCE Mathematice Grade 5-9 Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

1. In collaborative learning, how are classrooms typically organized?

- A. In rows facing the teacher**
- B. Individually at desks**
- C. In groups of 2-5**
- D. In a circle for discussion**

2. What type of triangle has sides of equal length?

- A. Scalene triangle**
- B. Isosceles triangle**
- C. Equilateral triangle**
- D. Right triangle**

3. What is the formula for the area of a circle?

- A. Area = $2\pi r$**
- B. Area = πr^2**
- C. Area = r^2**
- D. Area = πd**

4. In a coordinate plane, what do the x and y coordinates of a point represent?

- A. The x-coordinate is vertical, and the y-coordinate is horizontal.**
- B. The x-coordinate represents the horizontal position, and the y-coordinate represents the vertical position.**
- C. The y-coordinate is always greater than the x-coordinate.**
- D. X and Y represent time and distance respectively.**

5. If the diameter of a circle is doubled, what happens to the area?

- A. The area remains the same**
- B. The area is doubled**
- C. The area is quadrupled**
- D. The area decreases by half**

6. Which of the following describes a cubic number?

- A. A number multiplied by itself**
- B. A number raised to the third power**
- C. A number divided by itself**
- D. A number equating to its square root**

7. Which of the following is NOT a factor of 12?

- A. 1**
- B. 3**
- C. 5**
- D. 12**

8. Which series correctly lists integers?

- A. -1, 0, 1, 2**
- B. -5, -4, -2, 2, 4, 5...**
- C. 0, 1, 2, 3**
- D. 2, 3, 4**

9. Which of the following expresses the ratio "two to five"?

- A. 5:2**
- B. 2:5**
- C. 1:2**
- D. 3:5**

10. Which property allows you to multiply a number by a sum and distribute it across the addends?

- A. Associative property**
- B. Commutative property**
- C. Distributive property**
- D. Inverse property**

Answers

SAMPLE

- 1. C**
- 2. C**
- 3. B**
- 4. B**
- 5. C**
- 6. B**
- 7. C**
- 8. B**
- 9. B**
- 10. C**

SAMPLE

Explanations

SAMPLE

1. In collaborative learning, how are classrooms typically organized?

- A. In rows facing the teacher**
- B. Individually at desks**
- C. In groups of 2-5**
- D. In a circle for discussion**

In collaborative learning, classrooms are typically organized in groups of 2-5 to facilitate interaction and teamwork among students. This arrangement allows learners to engage with each other, share ideas, and work together on tasks or projects. The small group size encourages participation from all members, promotes communication skills, and helps students learn from one another's perspectives. When students collaborate in such settings, they can develop critical thinking and problem-solving skills as they actively engage in discussions and collaborative activities. This structure is essential for fostering a positive learning environment where students feel comfortable sharing their ideas and challenges.

2. What type of triangle has sides of equal length?

- A. Scalene triangle**
- B. Isosceles triangle**
- C. Equilateral triangle**
- D. Right triangle**

A triangle with all sides of equal length is classified as an equilateral triangle. In an equilateral triangle, not only are all three sides equal, but all three interior angles are also equal, each measuring 60 degrees. This symmetry creates a triangle that is balanced and aesthetically pleasing, often associated with various geometric principles and properties. Scalene triangles, by contrast, have all sides of different lengths and, therefore, no angles that are equal. Isosceles triangles feature at least two sides that are of equal length, but not necessarily all three, making them distinct from equilateral triangles. Right triangles contain one angle that measures exactly 90 degrees, without any requirements regarding the lengths of the sides. Understanding these definitions is crucial in identifying the characteristics of different types of triangles.

3. What is the formula for the area of a circle?

- A. Area = $2\pi r$
- B. Area = πr^2**
- C. Area = r^2
- D. Area = πd

The formula for the area of a circle is given by πr^2 , where r represents the radius of the circle. This equation is derived from integral calculus and reflects the idea that the area of a circle is proportional to the square of its radius. When you square the radius, you account for the entire two-dimensional space within the circle. The constant π (pi) serves as a ratio that allows us to relate the circumference of the circle to its diameter and plays a crucial role in representing how much space the circle occupies. In contrast, the other options do not accurately describe the area of a circle. The formula $2\pi r$ is known as the circumference of a circle, which measures the distance around the circle rather than the area within it. The formula r^2 simply represents the square of the radius, which lacks the necessary multiplier of π to define the area. Lastly, the formula πd also pertains to the circumference, where d is the diameter; again, it does not calculate the area. Thus, B is the correct choice because it correctly expresses the relationship between the radius and the area of a circle.

4. In a coordinate plane, what do the x and y coordinates of a point represent?

- A. The x-coordinate is vertical, and the y-coordinate is horizontal.
- B. The x-coordinate represents the horizontal position, and the y-coordinate represents the vertical position.**
- C. The y-coordinate is always greater than the x-coordinate.
- D. X and Y represent time and distance respectively.

The x and y coordinates of a point in a coordinate plane serve specific roles related to the location of that point. The x-coordinate indicates the horizontal position of the point along the x-axis, which runs left and right. A positive x-coordinate moves the point to the right, while a negative x-coordinate moves it to the left. Conversely, the y-coordinate represents the vertical position of the point along the y-axis, which runs up and down. A positive y-coordinate moves the point upward, while a negative y-coordinate moves it downward. Thus, the correct understanding is that the x-coordinate reflects how far left or right the point is, and the y-coordinate reflects how far up or down it is, making option B the accurate choice in describing the roles of these coordinates.

5. If the diameter of a circle is doubled, what happens to the area?

- A. The area remains the same**
- B. The area is doubled**
- C. The area is quadrupled**
- D. The area decreases by half**

When the diameter of a circle is doubled, the radius also doubles. The area of a circle is calculated using the formula $(A = \pi r^2)$, where (r) represents the radius. If the original radius is (r) , then doubling the diameter results in a new radius of $(2r)$. Substituting this new radius into the area formula gives: $(A = \pi (2r)^2)$. This simplifies to: $(A = \pi \cdot 4r^2 = 4(\pi r^2))$. This shows that the new area is four times the original area. Therefore, when the diameter is doubled, the area of the circle is indeed quadrupled. Understanding this relationship between the diameter, radius, and area is crucial in geometry, particularly in solving problems related to circles.

6. Which of the following describes a cubic number?

- A. A number multiplied by itself**
- B. A number raised to the third power**
- C. A number divided by itself**
- D. A number equating to its square root**

A cubic number is defined as a number that is raised to the third power, which means it is multiplied by itself twice. For example, (2^3) (2 cubed) equals $(2 \times 2 \times 2 = 8)$. This operation essentially involves taking a number and multiplying it by itself two additional times, which is precisely what option B describes. Understanding cubic numbers is crucial because they appear in various areas of mathematics, including geometry when calculating volumes, as well as algebraic expressions. The distinction here is clear: raising a number to the third power is the definitive action that constitutes a cubic number. Other options pertain to different mathematical operations and concepts, which do not accurately reflect the nature of cubic numbers.

7. Which of the following is NOT a factor of 12?

- A. 1**
- B. 3**
- C. 5**
- D. 12**

A factor of a number is defined as any integer that can be multiplied by another integer to produce that number. For the number 12, we can identify its factors by looking for integers that fit this definition. The factors of 12 are: - 1 ($1 \times 12 = 12$) - 2 ($2 \times 6 = 12$) - 3 ($3 \times 4 = 12$) - 4 ($4 \times 3 = 12$) - 6 ($6 \times 2 = 12$) - 12 ($12 \times 1 = 12$). Among the choices provided, the integers 1, 3, and 12 are factors of 12 because they can be paired with other positive integers to equal 12. However, the number 5 cannot be paired with any integer to achieve a product of 12, making it not a factor of 12. Therefore, identifying 5 as the option that is not a factor aligns accurately with the definition of what factors are.

8. Which series correctly lists integers?

- A. -1, 0, 1, 2
- B. -5, -4, -2, 2, 4, 5...**
- C. 0, 1, 2, 3
- D. 2, 3, 4

The correct series that lists integers is characterized by including all whole numbers, both negative and positive, as well as zero. The series that is provided encapsulates this definition as it contains negative integers (-5, -4, -2), zero (not listed but acceptable for integers, as it is a whole number), and positive integers (2, 4, 5). This series illustrates the concept of integers effectively by demonstrating a range that covers all values, including a mix of negative and positive integers along with additional values rather than just a small subset of them. For instance, it showcases both lower and higher integer values, thereby confirming that all points are indeed integers. The other options focus on smaller groups or do not represent a complete set of integers. One option is limited to non-negative integers, while others might miss various integers within a greater range. Therefore, the selected series encompasses the full spectrum of integers, validating its correctness.

9. Which of the following expresses the ratio "two to five"?

- A. 5:2
- B. 2:5**
- C. 1:2
- D. 3:5

The ratio "two to five" is represented numerically by the relationship of 2 to 5. This means that for every two units of one quantity, there are five units of another quantity. When written as a ratio, it is expressed as 2:5. This format indicates the first part of the ratio (two) comes before the second part (five), maintaining the order that describes the relationship accurately. In contrast, other options such as 5:2 would imply five units of one quantity to two units of another, which is not what is asked in the question. Similarly, 1:2 and 3:5 do not reflect the original ratio and thus do not convey the same meaning. Therefore, 2:5 is the clear and correct representation of the ratio "two to five."

10. Which property allows you to multiply a number by a sum and distribute it across the addends?

- A. Associative property**
- B. Commutative property**
- C. Distributive property**
- D. Inverse property**

The correct answer is the Distributive property, which states that when you multiply a number by a sum, you can distribute the multiplication across each addend within the parentheses. This property can be expressed mathematically as $a(b + c) = a \times b + a \times c$. For example, if you have $3(4 + 5)$, using the Distributive property means you can calculate it as $3 \times 4 + 3 \times 5$, which results in $12 + 15 = 27$. This property is essential in simplifying expressions and solving equations. The other properties mentioned do not address the distribution of multiplication over addition. The Associative property pertains to how numbers are grouped in addition or multiplication; the Commutative property deals with the order of numbers in addition or multiplication; while the Inverse property describes how a number combined with its reciprocal results in one. Each of these properties serves a different function in mathematics, but the Distributive property specifically focuses on multiplication across a sum.

SAMPLE