

FDNY Respiratory Medical Officer (RMO) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the primary use of a psychrometer by refrigeration engineers?**
 - A. Measure temperature of refrigerants**
 - B. Measure relative humidity level of the atmosphere**
 - C. Determine oil quality in compressors**
 - D. Monitor pressure levels in refrigerant systems**
- 2. Why is it important to use at least two compressors in a cascade system?**
 - A. To increase system efficiency significantly**
 - B. To avoid very high compression ratio for each compressor**
 - C. To reduce overall system size**
 - D. To lower electricity consumption**
- 3. What happens to the efficiency of a centrifugal compressor when the condensing pressure is lowered?**
 - A. Efficiency decreases**
 - B. Efficiency increases**
 - C. Efficiency stays the same**
 - D. Efficiency is irrelevant to condenser operation**
- 4. When is a chemical fire extinguisher system needed?**
 - A. In areas with high humidity**
 - B. Where water is not sufficient**
 - C. Only in commercial kitchens**
 - D. During routine maintenance**
- 5. How long should a fire watch be maintained if a standpipe system is out of service for two days?**
 - A. Only during the day**
 - B. The entire time the standpipe is out of service**
 - C. Only on the second day**
 - D. For 8 hours each day**

6. What component in the refrigeration cycle is responsible for compressing the refrigerant?

- A. Condenser**
- B. Expansion valve**
- C. Evaporator**
- D. Compressor**

7. What is the ASHRAE classification for ammonia as a refrigerant?

- A. A1**
- B. B2**
- C. C3**
- D. D4**

8. What kind of design does a centrifugal pump typically utilize?

- A. Submersible design**
- B. Axial flow design**
- C. Centrifugal design**
- D. Rotary design**

9. What happens to moisture levels in the air when its temperature drops?

- A. They increase**
- B. They remain constant**
- C. They decrease as capacity is reduced**
- D. They evaporate completely**

10. The elimination of corrosion in a cooling medium system can be achieved by using:

- A. Salt brine**
- B. Glycol**
- C. Water**
- D. Ammonia**

Answers

SAMPLE

1. B
2. B
3. B
4. B
5. B
6. D
7. B
8. C
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. What is the primary use of a psychrometer by refrigeration engineers?

- A. Measure temperature of refrigerants
- B. Measure relative humidity level of the atmosphere**
- C. Determine oil quality in compressors
- D. Monitor pressure levels in refrigerant systems

A psychrometer is an instrument specifically designed to measure the relative humidity of the atmosphere using two thermometers: one is a dry bulb that measures air temperature, and the other is a wet bulb that is moistened and used to measure the cooling effect of evaporation. The difference in readings between the two thermometers allows engineers to calculate the relative humidity. In the context of refrigeration engineering, understanding the relative humidity is crucial because it influences the cooling efficiency of systems, the choice of refrigerants, and the overall comfort levels in climate-controlled environments. Proper management of humidity is especially important in commercial and industrial refrigeration applications, where moisture levels can affect both product quality and system performance. The other choices, while relevant to different aspects of refrigeration and HVAC, do not pertain to the primary function of a psychrometer. Therefore, the focus on relative humidity as measured by a psychrometer highlights its essential role for refrigeration engineers.

2. Why is it important to use at least two compressors in a cascade system?

- A. To increase system efficiency significantly
- B. To avoid very high compression ratio for each compressor**
- C. To reduce overall system size
- D. To lower electricity consumption

Using at least two compressors in a cascade system is primarily important to avoid very high compression ratios for each individual compressor. When a gas needs to be compressed significantly, attempting to achieve this large pressure increase in a single stage can lead to mechanical stress, elevated temperatures, and reduced efficiency. By distributing the compression across multiple stages, each compressor can operate within its optimal performance range, thereby preventing complications such as overheating and wear, which can occur with excessively high compression ratios. This approach also allows for better management of heat generated during the compression process. With multiple compressors, the heat can be more effectively dissipated between stages, which enhances the overall reliability and longevity of the system. Moreover, segmenting the compression task can facilitate easier maintenance and operational flexibility. In the context of cascade systems, the arrangement allows for tailored compression strategies, ensuring that each compressor is appropriately sized for its stage of operation. This strategy safeguards against operational inefficiencies that would arise from overly aggressive compression in a single stage and enhances the system's overall performance and reliability.

3. What happens to the efficiency of a centrifugal compressor when the condensing pressure is lowered?

- A. Efficiency decreases**
- B. Efficiency increases**
- C. Efficiency stays the same**
- D. Efficiency is irrelevant to condenser operation**

When the condensing pressure is lowered in a centrifugal compressor, the efficiency tends to increase. This occurs because a lower condensing pressure reduces the load on the compressor. As the condensing pressure decreases, the compressor has to do less work to achieve the same flow rate, leading to a reduction in the energy required for compression. The improved efficiency is often due to the fact that lowering the condensing pressure can enhance the pressure ratio across the compressor. A smaller pressure difference between inlet and outlet allows the compressor to operate more optimally, resulting in less enthalpy increase per unit of volume of gas being compressed. Additionally, the reduced energy consumption typically corresponds with a decrease in thermal losses, thereby enhancing overall efficiency. In essence, as condensing pressure is optimized, the performance of the centrifugal compressor often shows significant improvements in efficiency, thereby maximizing its effectiveness in various applications.

4. When is a chemical fire extinguisher system needed?

- A. In areas with high humidity**
- B. Where water is not sufficient**
- C. Only in commercial kitchens**
- D. During routine maintenance**

A chemical fire extinguisher system is essential in environments where water is not an effective agent for suppressing fires. Since certain types of fires, such as those involving flammable liquids, metals, or electrical components, can actually worsen with water, a specialized extinguisher using chemical agents is necessary to safely extinguish such fires. Chemical extinguishers can effectively smother flames or interrupt the combustion process, making them invaluable in various settings where water is inadequate or can create additional hazards. Choosing this option underscores the importance of understanding the nature of different fire classes and the appropriate extinguishing agents required for specific fire types. This is critical in fire safety planning and emergency preparedness.

5. How long should a fire watch be maintained if a standpipe system is out of service for two days?

- A. Only during the day**
- B. The entire time the standpipe is out of service**
- C. Only on the second day**
- D. For 8 hours each day**

Maintaining a fire watch for the entire time a standpipe system is out of service is essential for ensuring safety during that period. The standpipe system is a key element in fire protection, providing firefighters with the ability to access water quickly in case of an emergency. When it is out of service, it poses an increased risk, and having a fire watch helps to monitor the area, detect potential fires early, and ensure that immediate action can be taken if a fire does occur. A fire watch will typically involve trained personnel who can act swiftly in the event of an emergency, including notifying fire departments and using fire extinguishers if necessary. The requirement to have a continuous fire watch until the system is restored ensures that there is no lapse in monitoring and response capability, which is crucial in maintaining safety standards during maintenance or repairs. Thus, the decision to keep the fire watch engaged for the entire duration the standpipe is out of service underscores a proactive approach to fire safety management, demonstrating the commitment to protecting life and property.

6. What component in the refrigeration cycle is responsible for compressing the refrigerant?

- A. Condenser**
- B. Expansion valve**
- C. Evaporator**
- D. Compressor**

In the refrigeration cycle, the component responsible for compressing the refrigerant is the compressor. The function of the compressor is to increase the pressure of the refrigerant gas, which in turn raises its temperature. This is crucial because the refrigerant needs to be at a high pressure and temperature when it leaves the compressor in order to effectively release heat in the condenser. By compressing the refrigerant, the compressor facilitates the transition from the low-pressure evaporator to the high-pressure condenser, allowing for the continuous circulation of the refrigerant throughout the system. This process ensures that heat is absorbed in the evaporator, where the refrigerant evaporates and cools the surrounding area, and then released in the condenser as it is cooled and condensed back into a liquid state. Understanding the role of the compressor is essential for grasping how the entire refrigeration cycle operates, as it is a key player in maintaining the system's efficiency and effectiveness in cooling applications.

7. What is the ASHRAE classification for ammonia as a refrigerant?

- A. A1**
- B. B2**
- C. C3**
- D. D4**

Ammonia, when classified by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), is categorized under the B2 classification. This classification indicates that ammonia is considered a mildly toxic refrigerant that can pose health risks in the event of a leak, as it has a lower toxicity threshold compared to refrigerants labeled as A1 (which are non-toxic) and C3 or D4 (which are classified as highly toxic or flammable). Understanding the implications of these classifications is crucial, especially in settings where safety is paramount, such as in handling and storing refrigerants. The B2 classification highlights the need for appropriate safety measures when working with ammonia to prevent inhalation and exposure risks, indicating its potential to cause adverse health effects at exposure levels below those of more toxic refrigerants. The classification system serves as an important framework for making informed decisions regarding safety protocols, training, equipment use, and emergency procedures in environments where ammonia is utilized.

8. What kind of design does a centrifugal pump typically utilize?

- A. Submersible design**
- B. Axial flow design**
- C. Centrifugal design**
- D. Rotary design**

A centrifugal pump utilizes a centrifugal design, which is characterized by a rotating impeller that draws fluid into the pump and then expels it through a discharge pipe. This design allows for the conversion of rotational kinetic energy, generated by the impeller, into hydrodynamic energy, driving the fluid away from the pump at high velocity. The efficiency of the centrifugal pump comes from its ability to handle large volumes of fluid at varying pressures, making it suitable for numerous applications, such as water supply, irrigation, and HVAC systems. The centrifugal design is distinct in that it relies on the principles of centrifugal force to move the liquid, which is an essential aspect of its operation and differentiates it from other pump types.

9. What happens to moisture levels in the air when its temperature drops?

- A. They increase**
- B. They remain constant**
- C. They decrease as capacity is reduced**
- D. They evaporate completely**

When the temperature of the air drops, the capacity of air to hold moisture also decreases. Warm air can hold more water vapor than cold air, which is why cooler temperatures often result in a higher relative humidity. As the temperature declines, the air reaches a point where it can't retain as much moisture, leading to a decrease in the actual amount of water vapor present. This process can result in condensation if the temperature continues to drop, as the air becomes saturated and the moisture begins to condense into liquid form, such as dew or frost. This understanding is crucial for respiratory medical officers, as changes in humidity can affect respiratory conditions and overall air quality.

10. The elimination of corrosion in a cooling medium system can be achieved by using:

- A. Salt brine**
- B. Glycol**
- C. Water**
- D. Ammonia**

Using glycol as a cooling medium can effectively eliminate corrosion within a cooling system. Glycol, particularly ethylene glycol or propylene glycol, serves as an antifreeze agent and has desirable properties that inhibit the chemical reactions leading to corrosion. Its use helps maintain the integrity of metal components by forming a protective layer on surfaces, thereby reducing the potential for rust and degradation that may occur in metal piping and fittings. In contrast, salt brine can contribute to corrosion due to its high salt content, which is known to accelerate deterioration of metal surfaces. Water, although it may appear to be a neutral solution, is also corrosive over time, especially in the presence of oxygen and other impurities. Ammonia can be corrosive in certain environments as well and may react negatively with moisture, leading to additional corrosion problems. Therefore, glycol stands out as the preferred option to eliminate corrosion in a cooling medium system.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://fdnyrmo.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE