FDNY CoF - Use of LPG or CNG in Engine Fuel Systems (G-22) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What safety equipment is essential when handling LPG or CNG?
 - A. Personal protective equipment including gloves, goggles, and flame-resistant clothing
 - B. Only gloves and goggles
 - C. Fire extinguishers only
 - D. Respirators and masks
- 2. Natural gas is compared to air in terms of weight. Is it heavier or lighter?
 - A. Heavier
 - **B.** Lighter
 - C. Equal
 - D. More dense
- 3. What is a potential hazard of not using personal protective equipment when handling LPG or CNG?
 - A. Increased risk of burns or inhalation of toxic gases
 - B. Decreased fuel efficiency
 - C. Inability to start the engine
 - D. Higher fuel costs
- 4. What training is essential for employees handling LPG and CNG?
 - A. Marketing and sales techniques
 - B. Vehicle maintenance training
 - C. Safety practices, emergency-response training, and equipment safety protocols
 - D. General first aid training
- 5. What are the lower and upper explosive limits (LEL and UEL) of methane gas?
 - A. 1% and 10%
 - B. 5% and 15%
 - C. 10% and 20%
 - D. 15% and 25%

- 6. What potential hazards are associated with LPG and CNG?
 - A. Corrosion, toxicity, and reactive volatility
 - B. Flammability, explosive potential, and asphyxiation
 - C. Odorless, non-flammable nature, and heavy metal contamination
 - D. Reduced emissions and environmental friendliness
- 7. Where are portable LPG and CNG containers with a capacity greater than 16.4 oz and 8.7 SCF prohibited from being stored?
 - A. Outdoors
 - **B.** Indoors
 - C. In vehicles
 - D. Near heat sources
- 8. How far must heaters used for curing and drying be located from LPG containers?
 - A. 3 feet
 - B. 6 feet
 - **C.** 10 feet
 - **D.** 12 feet
- 9. What is the maximum allowable distance for LPG tanks from a building?
 - A. Within 5 feet of the building
 - B. At least 10-25 feet depending on tank size
 - C. There is no specific requirement
 - D. At least 30 feet from any structure
- 10. What should be done to minimize the risks during LPG and CNG system service?
 - A. Perform routine checks and maintenance
 - B. Disable safety systems temporarily for efficiency
 - C. Keep all tools and machinery nearby
 - D. Engage a certified technician only for emergency repairs

Answers

- 1. A 2. B 3. A 4. C 5. B 6. B 7. B 8. B 9. B 10. A

Explanations

1. What safety equipment is essential when handling LPG or CNG?

- A. Personal protective equipment including gloves, goggles, and flame-resistant clothing
- B. Only gloves and goggles
- C. Fire extinguishers only
- D. Respirators and masks

Personal protective equipment, including gloves, goggles, and flame-resistant clothing, is essential when handling LPG (Liquefied Petroleum Gas) or CNG (Compressed Natural Gas) due to the hazardous nature of these gases. Handling these fuels poses risks such as exposure to potentially harmful substances, burns from flammable materials, and the possibility of pressure-related injuries. Gloves protect the hands from accidental contact with corrosive materials or sharp objects, while goggles safeguard the eyes from splashes or sparks. Flame-resistant clothing is critical for providing a barrier against flames or equipment mishaps that could lead to severe burns. The use of comprehensive protective gear helps ensure the safety of individuals working with these gases by minimizing exposure to hazards. This thorough approach to safety emphasizes the importance of being well-equipped for all potential dangers encountered in such environments, promoting a culture of safety and preparedness in handling these flammable substances.

2. Natural gas is compared to air in terms of weight. Is it heavier or lighter?

- A. Heavier
- **B.** Lighter
- C. Equal
- D. More dense

Natural gas is indeed lighter than air. This is an important characteristic that affects how it behaves when released into the atmosphere. When natural gas leaks, it tends to rise and disperse into the air due to its lower density. This behavior is crucial for safety considerations, as it minimizes the risk of accumulating in low-lying areas, which can create explosive conditions. Understanding the properties of natural gas in relation to air is essential for designing safety protocols in environments where this fuel is utilized. By recognizing that natural gas is lighter, individuals and professionals can implement measures to vent leaks effectively and prevent hazardous situations. This knowledge is foundational in fields that involve the use of LPG or CNG in engine fuel systems, such as safety management and emergency response planning.

- 3. What is a potential hazard of not using personal protective equipment when handling LPG or CNG?
 - A. Increased risk of burns or inhalation of toxic gases
 - B. Decreased fuel efficiency
 - C. Inability to start the engine
 - D. Higher fuel costs

The potential hazard of not using personal protective equipment when handling LPG (liquefied petroleum gas) or CNG (compressed natural gas) is indeed an increased risk of burns or inhalation of toxic gases. When working with LPG or CNG, these fuels can be hazardous if there is a leak or if the equipment malfunctions. LPG is heavier than air and can accumulate in low areas, creating a risk of fire or explosion. Inhaling LPG can result in respiratory issues, while exposure to CNG in a confined area can lead to suffocation due to displacement of oxygen. Personal protective equipment (PPE) such as gloves, goggles, and face shields are critical in protecting individuals from these hazards. The other options focus on mechanical or economic aspects rather than safety. Decreased fuel efficiency, inability to start the engine, and higher fuel costs do not directly relate to personal safety while handling these gases, thus making them less relevant in the context of this question.

- 4. What training is essential for employees handling LPG and CNG?
 - A. Marketing and sales techniques
 - B. Vehicle maintenance training
 - C. Safety practices, emergency-response training, and equipment safety protocols
 - D. General first aid training

Training in safety practices, emergency-response procedures, and equipment safety protocols is crucial for employees handling LPG (Liquefied Petroleum Gas) and CNG (Compressed Natural Gas). This type of training provides employees with the knowledge and skills necessary to work safely with these gases, which can be hazardous if not handled properly. For example, understanding the properties of LPG and CNG, such as their flammability and the risks associated with leaks, is vital for preventing accidents. Emergency-response training prepares employees to respond effectively in case of incidents, such as leaks or fires, ensuring they can take appropriate actions to minimize risks to themselves and others. Additionally, familiarity with equipment safety protocols ensures that employees are aware of safe operating procedures and maintenance practices that help prevent malfunctions and accidents in the first place. While other training options may be valuable in different contexts—such as maintenance training being important for the upkeep of vehicles or general first aid training being helpful in emergency situations—specific and thorough knowledge of safety practices surrounding LPG and CNG handling is what keeps employees safe in their day-to-day operations.

- 5. What are the lower and upper explosive limits (LEL and UEL) of methane gas?
 - A. 1% and 10%
 - **B.** 5% and 15%
 - C. 10% and 20%
 - D. 15% and 25%

The lower and upper explosive limits (LEL and UEL) of methane gas are indeed 5% and 15%. These limits refer to the concentration of methane in the air, below which the gas will not ignite (LEL) and above which will not sustain combustion (UEL). Methane's LEL being at 5% means that at concentrations lower than this level, there is not enough methane mixed with air to form an ignitable mixture. Conversely, the UEL at 15% indicates the point beyond which there is too much methane in the air for combustion to occur. Understanding these limits is critical for safety in environments where methane may be present, like in certain engine fuel systems, to avoid accidental ignition and explosions. This knowledge is vital not only for ensuring safe handling and use of methane but also for effective monitoring and preventative measures in any operation involving gas fuel systems.

- 6. What potential hazards are associated with LPG and CNG?
 - A. Corrosion, toxicity, and reactive volatility
 - B. Flammability, explosive potential, and asphyxiation
 - C. Odorless, non-flammable nature, and heavy metal contamination
 - D. Reduced emissions and environmental friendliness

The potential hazards associated with LPG (Liquefied Petroleum Gas) and CNG (Compressed Natural Gas) primarily stem from their flammable and explosive characteristics, as well as the risk of asphyxiation. Both LPG and CNG are highly flammable gases, and they can form explosive mixtures with air. This creates a significant risk in the event of leaks or improper handling, as ignition sources can easily ignite the gas. In addition to flammability and explosive potential, there is the hazard of asphyxiation. While these gases are combustible, their presence in high concentrations can displace oxygen in the air, leading to suffocation if individuals are exposed in confined spaces or areas with inadequate ventilation. Thus, understanding these hazards is critical when working with LPG and CNG, as it enables individuals to take the necessary precautions to prevent accidents and ensure safety.

- 7. Where are portable LPG and CNG containers with a capacity greater than 16.4 oz and 8.7 SCF prohibited from being stored?
 - A. Outdoors
 - **B. Indoors**
 - C. In vehicles
 - D. Near heat sources

Portable LPG and CNG containers with a capacity greater than 16.4 oz and 8.7 SCF are prohibited from being stored indoors primarily due to safety concerns. The storage of these containers indoors poses significant risks, as they can leak, leading to the accumulation of flammable gases in enclosed spaces. This accumulation, even at low concentrations, can create an explosive environment, endangering individuals in the vicinity. Storing these containers indoors can also hinder proper ventilation necessary for dispersing any leaked gas, increasing the danger of fire or explosion. Therefore, regulations are put in place to ensure they are stored in well-ventilated areas, typically outdoors, where any potential leak can dissipate safely into the environment, reducing the risk to people and property.

- 8. How far must heaters used for curing and drying be located from LPG containers?
 - A. 3 feet
 - B. 6 feet
 - C. 10 feet
 - D. 12 feet

The correct distance that heaters used for curing and drying must be located from LPG containers is 6 feet. This requirement is in place to minimize the risk of heat potentially affecting the integrity of the LPG containers, which could lead to hazardous situations such as leaks or explosions. Heaters generate significant amounts of heat, and positioning them too close to LPG storage could elevate the temperature of the containers beyond safe limits. By adhering to the 6-foot distance guideline, you create a safer working environment and reduce the likelihood of accidents related to the handling and storage of LPG.

9. What is the maximum allowable distance for LPG tanks from a building?

- A. Within 5 feet of the building
- B. At least 10-25 feet depending on tank size
- C. There is no specific requirement
- D. At least 30 feet from any structure

The maximum allowable distance for LPG tanks from a building is based on safety regulations designed to minimize the risk of fire and explosion. The correct answer indicates that the required distance is at least 10 to 25 feet, which varies depending on the size of the tank. Smaller tanks may have a shorter distance requirement, while larger tanks necessitate a greater separation from structures to mitigate the hazards associated with potential leaks. This regulation is in place to ensure adequate safety measures are followed, as LPG is a highly flammable substance. Keeping the tanks at a specified distance helps to protect buildings and occupants from the risks associated with gas accumulation and potential ignition sources. The emphasis on tank size reflects that larger quantities of flammable gas pose greater risks, thus necessitating more stringent distance regulations. In contrast, the other options do not accurately reflect the established safety standards. For instance, suggesting a distance within 5 feet would not provide sufficient safety clearance for any LPG tank. A statement that there is no specific requirement disregards the regulatory framework intended to protect both structures and people. Lastly, a minimum distance of at least 30 feet might be excessively cautious for smaller tanks, which do have established minimum distances much lower. Thus, the guidelines are in place to factor in the

10. What should be done to minimize the risks during LPG and CNG system service?

- A. Perform routine checks and maintenance
- B. Disable safety systems temporarily for efficiency
- C. Keep all tools and machinery nearby
- D. Engage a certified technician only for emergency repairs

To minimize the risks during LPG and CNG system service, performing routine checks and maintenance is vital. This proactive approach ensures that all components of the fuel system are functioning correctly and safely. Regular inspections help identify potential problems before they escalate, such as leaks or system malfunctions, which could lead to hazardous conditions. Proper maintenance also involves verifying that safety devices, such as pressure relief valves and alarms, are operational, thereby reducing the likelihood of accidents. In contrast, disabling safety systems, keeping tools and machinery too close during service, or relying solely on certified technicians for emergencies do not address the ongoing maintenance and precautionary measures that are essential for safe operation. Regular checks and maintenance work to foster a culture of safety, ensuring that any issues are caught and resolved before they can lead to dangerous situations in LPG and CNG systems.