FDNY CoF - Torch Use of Flammable Gases in Laboratories (C-14) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. How many classes are unstable (reactive) materials divided into based on hazard level?
 - A. Two classes
 - **B.** Three classes
 - C. Four classes
 - D. Five classes
- 2. Which symbol indicates unusual reactivity with water in the NFPA special hazard symbols?
 - A. OX
 - B. W
 - C. R
 - D. A
- 3. How frequently are portable fire extinguishers required to be inspected?
 - A. Weekly
 - **B.** Monthly
 - C. Quarterly
 - **D.** Annually
- 4. What is a condition that allows chemicals to be stored in a hood?
 - A. Short-term use chemicals only
 - B. Chemicals used in long-term experiments
 - C. Household cleaning products
 - D. Any chemicals without restrictions
- 5. What is required for the renewal of a fire department permit?
 - A. New application
 - **B.** Inspection
 - C. Safety training
 - D. Payment of fees

- 6. How should chemicals be organized in a laboratory?
 - A. By size
 - **B.** Alphabetically
 - C. By color
 - D. By compatibility
- 7. What is a corrosive material defined as?
 - A. A liquid that can corrode metal within a month
 - B. A substance that causes immediate burns to skin
 - C. A liquid, solid, or gas that causes permanent injury to human skin
 - D. A material that can produce toxic fumes
- 8. When using a laboratory hood, which statement about the volume of Class I liquids applies?
 - A. They can be dispensed in any volume
 - B. They cannot be used at all in hoods
 - C. The volume must be under 5 gallons
 - D. Only small quantities are allowed if diluted
- 9. What is required for personal supervision according to fire safety regulations?
 - A. Presence of a certified individual at a designated location
 - B. Scheduled checks by safety officers
 - C. Continuous monitoring by remote systems
 - D. Availability of written protocols on site
- 10. What should be ensured when storing flammable materials in a lab?
 - A. Temperature should be kept at a constant low
 - B. They should be stored in a ventilated area
 - C. They must be kept away from any heat sources
 - D. They should be re-labeled regularly

Answers

- 1. C 2. B 3. B 4. B 5. B 6. D 7. C 8. C 9. A 10. C

Explanations

1. How many classes are unstable (reactive) materials divided into based on hazard level?

- A. Two classes
- **B.** Three classes
- C. Four classes
- D. Five classes

Unstable (reactive) materials are categorized into four classes based on their hazard level and the type of reaction they can undergo. This classification system helps ensure that workers in laboratories and industries understand the specific risks associated with different materials and can take appropriate precautions when handling them. The four classes generally include: 1. **Class 1**: Materials that are normally stable but may become unstable under certain conditions, such as exposure to heat or shock. 2. **Class 2**: Materials that are unstable at room temperature and can undergo rapid decomposition, even without an external ignition source. 3. **Class 3**: Materials that may polymerize violently, producing heat and gas, leading to explosive situations. 4. **Class 4**: Materials that can undergo explosive reactions without the need for an external energy source, posing significant dangers in a laboratory setting. Understanding this classification system is crucial for the safe handling and storage of reactive materials in laboratories, ensuring that proper safety protocols are in place to mitigate any potential hazards.

2. Which symbol indicates unusual reactivity with water in the NFPA special hazard symbols?

- A. OX
- B. W
- C. R
- D. A

The symbol that indicates unusual reactivity with water in the NFPA special hazard symbols is represented by the letter 'W.' This specifically stands for a warning regarding the material's water reactivity. It is crucial in laboratory settings to be aware of substances that can react violently or produce hazardous gases when in contact with water, as this can pose serious safety risks during experiments or emergencies. In contrast, other symbols have different meanings. For instance, 'OX' signifies an oxidizer, which can enhance combustion or cause a fire in the presence of combustible materials. The letter 'R' indicates reactive materials that may be unstable under normal conditions, although it does not specifically address reactivity with water. 'A' typically denotes an asphyxiant, not focusing on reactivity concerns. Understanding these symbols and their implications is fundamental to maintaining safety in environments where flammable gases and other reactive chemicals are utilized.

- 3. How frequently are portable fire extinguishers required to be inspected?
 - A. Weekly
 - **B.** Monthly
 - C. Quarterly
 - D. Annually

Portable fire extinguishers are required to be inspected monthly to ensure they are in proper working condition. This inspection is crucial because it allows personnel to check for any signs of damage, verify that the extinguishers are properly mounted and accessible, and ensure that they are fully charged. Regular monthly inspections help identify issues early, providing an opportunity to maintain firefighting equipment and ensure safety in the lab or workplace environment. While other time frames such as weekly or quarterly inspections might increase safety, the established monthly standard is sufficient to maintain compliance and operational readiness.

- 4. What is a condition that allows chemicals to be stored in a hood?
 - A. Short-term use chemicals only
 - **B.** Chemicals used in long-term experiments
 - C. Household cleaning products
 - D. Any chemicals without restrictions

The appropriate choice pertains to the requirement that chemicals used in long-term experiments are indeed suitable for storage in a hood. Hoods are essential safety equipment in laboratories as they help to contain hazardous vapors, dusts, and gases, ensuring a safer environment for the personnel working in the lab. When working with chemicals intended for long-term experiments, it's vital these substances are stored properly to minimize the risk of exposure. Hoods are designed to provide continuous ventilation and can maintain specific air quality conditions necessary for handling and storing more substantial quantities of potentially hazardous materials over an extended duration. Short-term use chemicals can sometimes be stored elsewhere, as their immediate use may limit the duration of exposure concerns. Household cleaning products typically do not belong in laboratory environments and could introduce unforeseen hazards. As for the option concerning any chemicals without restrictions, it does not recognize the importance of proper safety protocols and regulations that classify which chemicals can be used and stored in a lab setting based on their properties and potential risks. In summary, using a hood for chemicals involved in long-term experiments supports compliance with safety protocols designed to protect laboratory personnel from harmful exposure.

5. What is required for the renewal of a fire department permit?

- A. New application
- **B.** Inspection
- C. Safety training
- D. Payment of fees

For the renewal of a fire department permit, an inspection is typically required to ensure compliance with safety regulations and standards. This inspection assesses whether the facility or operation continues to meet the necessary safety measures that are crucial for using flammable gases in laboratories. The importance of the inspection lies in verifying that all safety protocols are being followed and that there hasn't been any significant change in conditions that could pose a risk. While the other options may be involved in the broader context of operating a laboratory or managing safety, the specific requirement for permit renewal focuses on the need for an inspection to validate ongoing adherence to safety standards. This process helps ensure that any potential hazards are identified and addressed, reinforcing the overall safety of the laboratory environment.

6. How should chemicals be organized in a laboratory?

- A. By size
- **B.** Alphabetically
- C. By color
- D. By compatibility

Organizing chemicals in a laboratory by compatibility is crucial for maintaining safety and preventing hazardous reactions. Certain chemicals can react violently or release harmful gases when mixed, so storing incompatible chemicals separately minimizes the risk of accidental reactions. For example, acids should not be stored with bases, and oxidizers should be kept away from flammable materials. This method not only helps in ensuring a safer working environment but also streamlines the process of locating chemicals required for experiments. While organizing chemicals by size, alphabetically, or by color may seem practical, these methods do not address the essential safety considerations that compatibility-based organization does. Size and color do not play a role in how chemicals interact with each other, and alphabetical organization, though useful for quick reference, could lead to dangerous situations if incompatible substances are stored near one another. Therefore, prioritizing compatibility is the best practice for chemical organization in a laboratory setting.

- 7. What is a corrosive material defined as?
 - A. A liquid that can corrode metal within a month
 - B. A substance that causes immediate burns to skin
 - C. A liquid, solid, or gas that causes permanent injury to human skin
 - D. A material that can produce toxic fumes

A corrosive material is defined as a liquid, solid, or gas that can cause permanent injury to human skin. This definition encompasses a wide range of substances that can lead to severe physical harm upon contact with skin, tissues, or other biological components. The focus is on the potential for permanent damage, which emphasizes the long-lasting effects these materials can have on health and safety. This makes it especially important in laboratory settings where handlers must be aware of the risks and properly manage these substances. In the context of safety protocols and chemical handling, understanding that a corrosive material can cause irreversible injuries is critical for implementing appropriate protective measures, such as using personal protective equipment (PPE) and following emergency response procedures.

- 8. When using a laboratory hood, which statement about the volume of Class I liquids applies?
 - A. They can be dispensed in any volume
 - B. They cannot be used at all in hoods
 - C. The volume must be under 5 gallons
 - D. Only small quantities are allowed if diluted

When working with laboratory hoods and Class I liquids, it is essential to follow safety regulations due to the flammable nature of these liquids. The correct statement indicates that the volume must be under 5 gallons. This limitation is in place to minimize the risk of fire and ensure proper ventilation within the hood. By restricting the volume, the likelihood of a fire hazard is reduced, and the hood can effectively ventilate any vapors generated from the liquid. This regulation is designed to ensure that the use of Class I liquids remains safe within the laboratory environment, balancing the need for accessibility to these substances while also prioritizing safety protocols. Adhering to this guideline helps maintain a controlled space where the risks associated with flammable liquids are minimized.

- 9. What is required for personal supervision according to fire safety regulations?
 - A. Presence of a certified individual at a designated location
 - B. Scheduled checks by safety officers
 - C. Continuous monitoring by remote systems
 - D. Availability of written protocols on site

Personal supervision as mandated by fire safety regulations necessitates the **presence of a certified individual at a designated location**. This requirement ensures that there is an experienced and knowledgeable person on-site who can respond immediately to any hazardous situations that may arise, particularly concerning the use of flammable gases in laboratories. The presence of this certified individual enables effective risk management by allowing for direct and immediate intervention in emergency scenarios, as well as ensuring that all safety protocols are being adhered to during operations. While other options may play a role in overall safety management, they do not fulfill the critical aspect of direct human oversight that is vital in environments where flammable gases are involved. Scheduled checks by safety officers, continuous monitoring by remote systems, and availability of written protocols can enhance safety practices but cannot replace the necessity for an actively supervising individual present in the area where potentially dangerous activities are taking place. This hands-on approach is key to mitigating risks associated with flammable materials.

- 10. What should be ensured when storing flammable materials in a lab?
 - A. Temperature should be kept at a constant low
 - B. They should be stored in a ventilated area
 - C. They must be kept away from any heat sources
 - D. They should be re-labeled regularly

When storing flammable materials in a lab, it is crucial to keep them away from any heat sources. Flammable materials can ignite easily when exposed to heat, resulting in potentially hazardous situations such as fires or explosions. By ensuring that these materials are stored away from heaters, ovens, and any equipment that produces heat, the risk of accidental ignition is significantly reduced. This is a fundamental safety measure in laboratory environments where flammable substances are handled regularly. Maintaining appropriate storage practices, such as using fire-safe cabinets and conducting regular safety checks, also plays an integral role in preventing incidents. It is essential to foster a safe working environment by being vigilant about potential ignition sources and emphasizing the importance of proper storage techniques for flammable materials.