FDNY CoF - Supervision of Smoke Detectors (S-93) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What type of smoke detector is generally recommended for residential use?
 - A. Photoelectric smoke detector
 - B. Ionic smoke detector
 - C. Combination smoke detector with carbon monoxide
 - D. None of the above
- 2. What does a blinking light on a smoke detector often signify?
 - A. That the device is malfunctioning
 - B. That it is operational and monitoring for smoke
 - C. That the battery is dead
 - D. That the alarm will sound in 5 minutes
- 3. What happens when smoke is detected by a smoke detector?
 - A. The smoke detector sends a notification to the fire department
 - B. The smoke detector emits a loud alarm
 - C. The smoke detector automatically extinguishes the fire
 - D. The smoke detector alerts the local police
- 4. What does the acronym P.A.S.S. stand for in relation to using a fire extinguisher?
 - A. Prepare, Aim, Squeeze, Sweep
 - B. Pull, Aim, Squeeze, Sweep
 - C. Press, Aim, Squeeze, Secure
 - D. Pull, Activate, Secure, Sweep
- 5. Motor fuel liquids in portable containers cannot be dispensed into which type of tanks?
 - A. Portable tanks
 - B. Cargo tanks
 - C. Stationary tanks
 - D. All of the above

- 6. What is included in the flammable liquid storage system?
 - A. Only storage tanks
 - B. A range of systems and equipment associated with tank storage
 - C. Only piping systems
 - D. Only transfer devices
- 7. How often are fire extinguishers required to be inspected?
 - A. Weekly
 - **B.** Monthly
 - C. Annually
 - D. Every six months
- 8. Which type of smoke detector is typically more effective at detecting smoldering fires?
 - A. Ionic smoke detectors
 - B. Photoelectric smoke detectors
 - C. Combination smoke detectors
 - D. Heat detectors
- 9. When is a temporary permit particularly useful?
 - A. For permanent installations
 - **B.** For construction sites
 - C. For emergency situations
 - D. For long-term operations
- 10. What defines a temporary tank?
 - A. A tank designed for fixed installations
 - B. An above-ground tank that exceeds 660 gallons
 - C. An above-ground tank not to exceed 660 gallons
 - D. A tank that is permanently anchored to the ground

Answers

- 1. C 2. B

- 2. B 3. B 4. B 5. D 6. B 7. B 8. B 9. B 10. C

Explanations

1. What type of smoke detector is generally recommended for residential use?

- A. Photoelectric smoke detector
- B. Ionic smoke detector
- C. Combination smoke detector with carbon monoxide
- D. None of the above

The combination smoke detector with carbon monoxide feature is widely recommended for residential use because it provides dual protection. This type of detector not only identifies smoke but also detects the presence of carbon monoxide, a colorless and odorless gas that can be deadly. In residential settings, where both fire hazards and carbon monoxide exposure are concerns, having a device that addresses both threats enhances safety for occupants. While photoelectric smoke detectors are effective at catching smoldering fires and ionic smoke detectors are better for detecting fast-flaming fires, relying solely on one type may leave vulnerabilities. A combination unit addresses both types of fire scenarios along with carbon monoxide detection, making it a comprehensive solution for home safety. This is particularly important in spaces where fuel-burning appliances are present, as those can pose additional risks associated with carbon monoxide. Thus, the combination smoke detector with carbon monoxide is preferred for its multifaceted protective capabilities.

- 2. What does a blinking light on a smoke detector often signify?
 - A. That the device is malfunctioning
 - B. That it is operational and monitoring for smoke
 - C. That the battery is dead
 - D. That the alarm will sound in 5 minutes

A blinking light on a smoke detector generally indicates that the device is operational and actively monitoring for smoke. This visual signal is designed to reassure users that the smoke detector is functioning correctly and is ready to alert them in the event of smoke or fire. While it's important to regularly check the status of any smoke detector, including its battery and overall condition, a blinking light is typically not a sign of malfunction or low battery. Instead, it signifies that the detector is in a normal state and capable of detecting smoke when necessary. Understanding the meaning of these indicators is crucial for effective fire safety and ensuring that smoke detection systems are maintained properly.

- 3. What happens when smoke is detected by a smoke detector?
 - A. The smoke detector sends a notification to the fire department
 - B. The smoke detector emits a loud alarm
 - C. The smoke detector automatically extinguishes the fire
 - D. The smoke detector alerts the local police

When smoke is detected by a smoke detector, the primary function is to emit a loud alarm. This loud alarm is designed to alert the occupants of the building to the presence of smoke, which is often an indication of fire. The primary purpose of the smoke detector is to provide early warning to help occupants evacuate the premises safely and to encourage them to take immediate action, such as calling the fire department. The other potential responses do not accurately represent the functionality of standard smoke detectors. For example, smoke detectors are not responsible for notifying the fire department directly, as this is typically a function of a monitored fire alarm system rather than a standalone smoke detector. Additionally, smoke detectors do not have the capability to extinguish fires; that responsibility lies with fire suppression systems or extinguishers. Finally, alerting local police is not a function associated with smoke detectors; their primary role is focused on fire detection.

- 4. What does the acronym P.A.S.S. stand for in relation to using a fire extinguisher?
 - A. Prepare, Aim, Squeeze, Sweep
 - B. Pull, Aim, Squeeze, Sweep
 - C. Press, Aim, Squeeze, Secure
 - D. Pull, Activate, Secure, Sweep

The acronym P.A.S.S. stands for Pull, Aim, Squeeze, Sweep, a critical sequence to follow when using a fire extinguisher. Understanding each component is essential for effectively extinguishing a fire. "Pull" refers to the action of pulling the pin located on the top of the extinguisher, which will allow the extinguisher to function. "Aim" directs the nozzle towards the base of the fire—this is crucial as targeting the flames directly can enhance the effectiveness of the extinguishing agent. "Squeeze" involves pressing the handle down to release the extinguishing agent, creating the necessary pressure to distribute the material onto the fire. Finally, "Sweep" means to move the nozzle from side to side across the base of the fire, ensuring that the agent covers the area evenly and effectively. This method is universally taught for using fire extinguishers and emphasizes the importance of methodical action in effectively combating small fires. Recognizing these steps can help prevent confusion during an emergency, ensuring a more efficient response.

5. Motor fuel liquids in portable containers cannot be dispensed into which type of tanks?

- A. Portable tanks
- B. Cargo tanks
- C. Stationary tanks
- D. All of the above

Motor fuel liquids in portable containers cannot be dispensed into portable tanks, cargo tanks, or stationary tanks due to safety regulations and potential risks involved in handling and storing flammable materials. Portable tanks are often used for safe transport and storage of hazardous materials, but dispensing directly from a portable container could lead to spills or leaks, undermining their intended purpose. Cargo tanks are designed to transport liquids over large distances, and transferring fuel into these tanks from portable containers poses significant risks of overfilling or incorrect handling, which can result in environmental hazards or fire risks. Similarly, stationary tanks are fixed installations intended for the secure storage of fuel; mixing the two methods of storage can lead to contamination or uncontrolled release of flammable materials. Overall, the regulations set forth aim to prevent accidents, environmental contamination, and ensure safe handling practices.

6. What is included in the flammable liquid storage system?

- A. Only storage tanks
- B. A range of systems and equipment associated with tank storage
- C. Only piping systems
- D. Only transfer devices

The flammable liquid storage system encompasses a comprehensive range of systems and equipment that are essential for the safe storage, handling, and transfer of flammable liquids. This includes not just the storage tanks themselves, but also associated components such as piping systems, transfer devices, containment systems, and safety equipment. These elements work together to ensure that flammable liquids are stored safely and efficiently, minimizing the risk of leaks, spills, and potential fire hazards. Therefore, understanding the entirety of the flammable liquid storage system is crucial for maintaining safety protocols and compliance with regulations. This integrated approach is vital because it takes into account the entire lifecycle of flammable liquid management, from storage to transfer, rather than isolating just one part of the system.

7. How often are fire extinguishers required to be inspected?

- A. Weekly
- **B. Monthly**
- C. Annually
- D. Every six months

Fire extinguishers are required to be inspected monthly in order to ensure they are in good working condition and ready for use in the event of a fire. This monthly inspection may include checking for any visible signs of damage, ensuring the pressure gauge is in the operable range, ensuring the pull pin is intact, and verifying that the extinguisher is easily accessible and has not been obstructed. Performing these inspections consistently helps to maintain safety standards and compliance with fire codes, ultimately reducing the risk of malfunction during an emergency. Regular monthly inspections form a critical part of fire safety management within buildings and facilities.

8. Which type of smoke detector is typically more effective at detecting smoldering fires?

- A. Ionic smoke detectors
- B. Photoelectric smoke detectors
- C. Combination smoke detectors
- D. Heat detectors

Photoelectric smoke detectors are particularly effective at detecting smoldering fires due to their design and operating principles. These detectors utilize a light source and a sensor that measures light levels. When smoke from a smoldering fire enters the detection chamber, it scatters the light, triggering the alarm. This type of fire often produces larger particles and more smoke before bursting into flames, making photoelectric detectors well-suited for these conditions. In contrast, ionization smoke detectors, while effective at detecting fast, flaming fires, are less responsive to the larger particles associated with smoldering fires. Combination smoke detectors, which include both ionization and photoelectric capabilities, may provide a balance but might not be as specialized for smoldering fires as the photoelectric variant. Heat detectors function on temperature changes and are typically not designed to respond to smoke at all, which limits their effectiveness in the early detection of smoldering fires. Therefore, for detecting smoldering fires, photoelectric smoke detectors are the most reliable choice.

9. When is a temporary permit particularly useful?

- A. For permanent installations
- **B. For construction sites**
- C. For emergency situations
- D. For long-term operations

A temporary permit is particularly useful for construction sites because it allows for the installation and operation of essential systems, such as smoke detectors, during the construction phase. This is crucial for ensuring safety and compliance with fire regulations while the building is still being developed. Temporary permits facilitate inspections and adjustments in a dynamic environment where the final setup has not yet been completed, allowing for flexibility while maintaining safety standards. In contrast, the other contexts do not align with the primary purpose of a temporary permit. Permanent installations typically require a permanent permit as they are meant to last long-term and need to comply with all final code requirements. Emergency situations may allow for expedited measures, but they do not generally rely on temporary permits in the same structured way as construction sites do. Long-term operations, like permanent installations, would also necessitate a different type of permitting to ensure the ongoing compliance and safety of the systems in place.

10. What defines a temporary tank?

- A. A tank designed for fixed installations
- B. An above-ground tank that exceeds 660 gallons
- C. An above-ground tank not to exceed 660 gallons
- D. A tank that is permanently anchored to the ground

A temporary tank is specifically defined as an above-ground tank that does not exceed 660 gallons in capacity. This limit is crucial because it differentiates temporary tanks from larger, more permanent storage solutions. Temporary tanks are often used in situations where there is a need for portable or movable storage, such as for short-term projects or emergency response situations. Their design emphasizes flexibility and transient use, making them distinct from fixed installations that are intended to be permanent or long-term. The specification of not exceeding 660 gallons is significant because it reflects regulatory considerations, safety protocols, and the need for proper containment measures, which are necessary for smaller-scale installations compared to those that would require more stringent controls for larger tanks. Thus, the definition focuses on the size limitation that characterizes the temporary nature of these tanks, ensuring that they meet safety and operational standards for the environments in which they are used.