

FDNY CoF Low PSI Oil Burner Operator P-99 Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What component is used to regulate the flow of oil in an oil burner system?**
 - A. Electrical relay**
 - B. Oil pump**
 - C. Combustion chamber**
 - D. Heat exchanger**

- 2. Which situation indicates that an oil burner requires maintenance?**
 - A. Consistent heat output**
 - B. Flame stability**
 - C. Frequent soot accumulation**
 - D. Clear exhaust emissions**

- 3. How often should oil burners be inspected and maintained?**
 - A. Every month**
 - B. Biannually**
 - C. Annually**
 - D. Every two years**

- 4. What can a technician do to diagnose a malfunctioning burner?**
 - A. Check the size of the burner**
 - B. Test the efficiency of the oil**
 - C. Observe flame color and adjust air supply**
 - D. Increase the oil temperature**

- 5. What function does the stack switch/primary control perform?**
 - A. Regulates fuel supply**
 - B. Shuts down the oil burner during ignition failure**
 - C. Measures temperature in the combustion chamber**
 - D. Controls air intake for combustion**

6. What could excessive smoke or soot around the burner indicate?

- A. Normal operation**
- B. Blocked flue vent**
- C. Low oil supply**
- D. High combustion efficiency**

7. Which classification of equipment produces combustion temperatures of 600° F or less?

- A. Medium Temp**
- B. High Temp**
- C. Low Temp**
- D. Extreme Temp**

8. What is the result of water in the fuel-oil?

- A. Improved combustion**
- B. Incorrect atomization**
- C. Higher fuel efficiency**
- D. Higher heating output**

9. How is the air-to-fuel ratio adjusted in an oil burner?

- A. By modifying the fuel pump rate**
- B. Using the flame spreader**
- C. Using the air shutter or damper**
- D. Through the control board settings**

10. Which of the following defines fuel-oil?

- A. A mix of organic compounds**
- B. Hydrocarbon oils with a flashpoint not lower than 100° F**
- C. Intentionally enriched petroleum**
- D. A type of natural gas**

Answers

SAMPLE

1. B
2. C
3. C
4. C
5. B
6. B
7. C
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. What component is used to regulate the flow of oil in an oil burner system?

- A. Electrical relay**
- B. Oil pump**
- C. Combustion chamber**
- D. Heat exchanger**

The oil pump is crucial in regulating the flow of oil in an oil burner system. Its primary function is to draw oil from the storage tank and deliver it to the burner at the appropriate pressure and flow rate required for efficient combustion. The oil pump ensures that the correct amount of oil is supplied, adjusting for changes in demand based on the heating needs of the system. This regulation is vital for maintaining optimal burner performance, preventing issues such as incomplete combustion, which could lead to inefficiency or safety risks. The other components listed have distinct functions that are essential for the overall operation of the burner system, but they do not primarily serve to regulate the flow of oil. The electrical relay manages electrical circuit operations, the combustion chamber is where the actual burning occurs, and the heat exchanger transfers heat to the surrounding area or system. Each plays an important role in the burner's operation, but the regulation of oil flow is specifically handled by the oil pump.

2. Which situation indicates that an oil burner requires maintenance?

- A. Consistent heat output**
- B. Flame stability**
- C. Frequent soot accumulation**
- D. Clear exhaust emissions**

Frequent soot accumulation in an oil burner is a strong indicator that the system requires maintenance. Soot forms as a byproduct of incomplete combustion, which can occur due to several factors such as improper fuel-air mixture, a dirty burner, or inadequate air supply. Accumulation of soot can not only reduce efficiency but also lead to more serious issues like overheating or even a fire hazard. In comparison, consistent heat output and flame stability suggest that the burner is operating correctly and efficiently. Clear exhaust emissions indicate clean combustion and typically mean that the burner is functioning well and not producing harmful pollutants. Therefore, it is the presence of frequent soot accumulation that signals the need for maintenance to ensure operational safety and efficiency.

3. How often should oil burners be inspected and maintained?

- A. Every month**
- B. Biannually**
- C. Annually**
- D. Every two years**

The correct answer is that oil burners should be inspected and maintained annually. This frequency ensures that the burner operates safely and efficiently while also adhering to industry regulations and standards. Regular annual inspections help identify any potential issues, such as wear and tear or combustion inefficiencies, which could lead to unsafe operating conditions or increased fuel consumption. Annual maintenance typically includes checking the fuel supply system, cleaning the burner components, and ensuring proper operation of safety features. This proactive approach to maintenance not only extends the lifespan of the equipment but also helps avoid unexpected breakdowns during high usage periods, which is especially critical during colder months when heating needs are greatest. Maintaining this schedule aligns with best practices in the industry and promotes safety for building occupants while also ensuring that the oil burner operates at optimal efficiency. This standard is widely accepted in both residential and commercial applications to ensure both compliance and performance.

4. What can a technician do to diagnose a malfunctioning burner?

- A. Check the size of the burner**
- B. Test the efficiency of the oil**
- C. Observe flame color and adjust air supply**
- D. Increase the oil temperature**

To diagnose a malfunctioning burner, observing the flame color and adjusting the air supply is essential. The flame color can provide valuable insight into the combustion process occurring within the burner. A proper flame should typically be blue, indicating complete combustion with the right amount of air and fuel. If the flame is yellow or orange, it may suggest incomplete combustion, which can signify an air supply issue or improper fuel mixing. Adjusting the air supply is a direct way to address issues indicated by the flame color. If the air supply is inadequate, the burner may not mix fuel and air properly, leading to poor combustion efficiency, increased emissions, and potential safety hazards. By tuning the air supply in response to the flame characteristics, a technician can restore proper function and efficiency to the burner. While other options may seem relevant, they do not directly address the immediate symptoms of a malfunctioning burner as effectively as observing flame color and adjusting air supply.

5. What function does the stack switch/primary control perform?

- A. Regulates fuel supply**
- B. Shuts down the oil burner during ignition failure**
- C. Measures temperature in the combustion chamber**
- D. Controls air intake for combustion**

The stack switch or primary control plays a critical safety role in the operation of oil burners. Specifically, it is designed to detect ignition failures. When the burner is attempting to ignite, the stack switch monitors whether combustion has occurred as expected. If the combustion chamber does not reach the desired temperature or if ignition fails entirely, the stack switch will respond by shutting down the oil burner. This feature is crucial for preventing the release of unburned fuel, which could pose a fire hazard. The ability to shut down the burner in these situations ensures that safety is maintained, protecting both the equipment and the surrounding environment. Understanding this function is essential for operating oil burners safely and effectively, as it highlights the importance of systems designed to respond to potentially hazardous situations.

6. What could excessive smoke or soot around the burner indicate?

- A. Normal operation**
- B. Blocked flue vent**
- C. Low oil supply**
- D. High combustion efficiency**

Excessive smoke or soot around the burner is a strong indicator of incomplete combustion, which is commonly tied to a blocked flue vent. When the flue vent is obstructed, it hampers the proper exit of combustion gases, leading to a buildup of unburned fuel and particulate matter. This condition typically results in an increase in smoke and soot production, signaling that the burner is not operating efficiently and may pose safety hazards. In contrast, normal operation would not produce excessive smoke or soot, while a low oil supply would not typically cause such a buildup but rather lead to inconsistent operation or shutdowns. High combustion efficiency is characterized by clean combustion with minimal emissions, directly opposing the scenario of excessive smoke and soot. Therefore, when assessing burner performance, a blocked flue vent is a significant concern that needs immediate attention.

7. Which classification of equipment produces combustion temperatures of 600° F or less?

- A. Medium Temp**
- B. High Temp**
- C. Low Temp**
- D. Extreme Temp**

The classification of equipment that produces combustion temperatures of 600° F or less is categorized as Low Temp. This designation is important because it indicates the operational characteristics and safety considerations of equipment operating within this temperature range. Low temperature equipment typically utilizes heating methods that are less aggressive than those in higher temperature classifications, which can affect combustion efficiency, fuel usage, and emissions. Understanding temperature classifications helps operators ensure they are using the right equipment for specific applications, facilitating better maintenance practices and promoting safety by recognizing the operational limits of the devices in use. The term "Low Temp" signifies that it is safe and appropriate for environments that do not require excessive heating, thus aligning with standard practices in controlling combustion processes.

8. What is the result of water in the fuel-oil?

- A. Improved combustion**
- B. Incorrect atomization**
- C. Higher fuel efficiency**
- D. Higher heating output**

Water in fuel oil primarily results in incorrect atomization during the combustion process. When water is present, it interferes with the mixture of fuel and air, which is critical for efficient combustion. Fuel oil is designed to burn in a specific droplet size, and the presence of water alters the properties of the fuel, leading to larger droplets. This disruption can cause incomplete combustion, resulting in a higher level of pollutants and reduced efficiency in the heating system. Since the proper atomization is necessary for a clean and effective burn, water's presence ultimately hinders the oil burner's ability to function optimally. This can lead to issues such as increased smoke production and reduced heating performance. Hence, the correct answer acknowledges the detrimental impact of water in fuel oil on atomization, leading to inefficient burner operation.

9. How is the air-to-fuel ratio adjusted in an oil burner?

- A. By modifying the fuel pump rate
- B. Using the flame spreader
- C. Using the air shutter or damper**
- D. Through the control board settings

In an oil burner, the air-to-fuel ratio is adjusted primarily through the use of the air shutter or damper. This component allows for the regulation of the amount of air that mixes with the fuel prior to combustion. By opening or closing the air shutter, the operator can increase or decrease the airflow, thus altering the mixture of air and oil being burned. Achieving the correct air-to-fuel ratio is crucial for efficient combustion, which leads to optimal burner performance, reduced emissions, and improved energy efficiency. While other options relate to burner operation, they do not specifically address the adjustment of the air-to-fuel ratio in the same direct manner as the air shutter or damper. For instance, modifying the fuel pump rate impacts how much fuel is delivered but does not directly manage the air concerned. Similarly, the flame spreader primarily influences the distribution of the flame rather than the air-fuel mixture, and control board settings may include parameters that indirectly influence the air-to-fuel ratio but are not the main method for its adjustment.

10. Which of the following defines fuel-oil?

- A. A mix of organic compounds
- B. Hydrocarbon oils with a flashpoint not lower than 100°F**
- C. Intentionally enriched petroleum
- D. A type of natural gas

Fuel-oil is specifically defined as hydrocarbon oils that possess a flashpoint not lower than 100°F. This definition is critical as the flashpoint indicates the temperature at which the fuel can vaporize to form an ignitable mixture in air. This property is essential for safety and handling purposes, as fuels with higher flashpoints are generally considered less hazardous when it comes to combustion risk. The flashpoint is also a regulatory consideration for storage and transportation of the fuel, impacting how it is classified and utilized in heating and energy systems. The other options do not accurately reflect the definition of fuel-oil: a mix of organic compounds might describe various materials but does not specifically delineate fuel-oil; intentionally enriched petroleum does not correspond to the classification or characteristics of fuel-oil; and a type of natural gas does not pertain to the classification of fuels derived from crude oil, which fuel-oil is. Therefore, identifying fuel-oil based on its flashpoint aligns with the industry's standards and definitions.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://fdnycofp99.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE