FANUC Robot Certification Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. Which mode is recommended to test a program for the first time?
 - A. RUN mode
 - **B. DEBUG mode**
 - C. STEP mode
 - D. EXECUTE mode
- 2. True or False: The R30iA and higher iPendant can access the internet.
 - A. True
 - **B.** False
 - C. Only in Auto Mode
 - D. Only with a special configuration
- 3. Which register would you typically increment to keep track of count in programming?
 - A. R[0]
 - B. R[1]
 - C. R[7]
 - D. R[10]
- 4. What is the restricted speed setting during T1 mode?
 - A. Full speed
 - B. Maximum speed
 - C. Jog and program playback at restricted speeds
 - D. Jog at full speed only
- 5. Which method is used to control the robot's motion limits?
 - A. Axis Management
 - B. DCS
 - C. Safety Protocols
 - **D. Motion Control Settings**

- 6. In regards to position registers, which coordinate element is represented by PR[1,3]?
 - A. X coordinate
 - **B.** Y coordinate
 - C. Z coordinate
 - D. W coordinate
- 7. How would you increment Register 7 (R[7]) by 1?
 - A. R[7] = R[7] + 2
 - B. R[7]=R[7]+1
 - C. R[7]=R[7]++
 - D. R[7]+=1
- 8. Which jog speed allows for precise movements?
 - A. VFINE
 - **B. FINE**
 - C. 100%
 - D. 95%
- 9. What key combination is used to record a program in FANUC?
 - A. CTRL + RECORD
 - **B. CTRL + POINT**
 - C. SHIFT + PROGRAM
 - D. SHIFT + POINT
- 10. How do you engage step mode on a FANUC robot?
 - A. Press the STEP key only
 - B. Hold FWD while pressing the STEP key
 - C. Press the STEP key and hold shift while pressing FWD or BWD
 - D. Access the system menu settings

Answers

- 1. C 2. A 3. C 4. C 5. B 6. C 7. A 8. B 9. D 10. C

Explanations

1. Which mode is recommended to test a program for the first time?

- A. RUN mode
- **B. DEBUG mode**
- C. STEP mode
- D. EXECUTE mode

STEP mode is indeed the recommended mode for testing a program for the first time due to its ability to execute the program incrementally, one instruction at a time. This method allows operators to closely monitor the robot's actions and verify that each step is functioning correctly before moving on to the next. It minimizes the risk of errors and allows for immediate corrections if something does not perform as intended. Additionally, using STEP mode provides an opportunity to observe the robot's response in real-time, which can offer insights into the program's logic and flow. If there are any issues or unexpected behaviors, they can be diagnosed and rectified immediately rather than after executing a full run, which could lead to potential complications or hazards. In contrast, RUN mode executes the entire program without pauses, which can be risky for first-time testing. DEBUG mode is useful for identifying and rectifying logical errors but may not provide the hands-on control that STEP mode offers. EXECUTE mode may imply execution without the same detailed observation and intervention flexibility. Therefore, STEP mode is the favored approach for first-time program testing.

- 2. True or False: The R30iA and higher iPendant can access the internet.
 - A. True
 - **B.** False
 - C. Only in Auto Mode
 - D. Only with a special configuration

The R30iA and higher iPendant indeed has the capability to access the internet, making the statement true. This functionality enables users to utilize various online resources, such as documentation, software updates, and support services directly from the iPendant interface. Being connected to the internet can also facilitate remote monitoring and troubleshooting of the robot, allowing for more efficient management and maintenance. While there may be specific conditions or configurations that affect how the network setup is implemented, the fundamental capability to access the internet exists in these iPendants. The ability to connect enhances the overall usability and functionality of the robot system, empowering operators to leverage the wealth of information available online to optimize their use of the robotic technology.

- 3. Which register would you typically increment to keep track of count in programming?
 - A. R[0]
 - B. R[1]
 - C. R[7]
 - D. R[10]

In programming for FANUC robots, registers are used to store different types of data, including counters. The convention is that R[7] is often designated as a general-purpose counter register. This register is typically incremented in looping structures or when an operation is performed a specific number of times, thereby keeping track of how many iterations have occurred. Using R[7] allows programmers to maintain a count without interfering with other registers that may hold different types of control or status information. Other registers, such as R[0] and R[1], are frequently used for different operational purposes, like storing specific configurations or variables relevant to the current program context. R[10] may also serve specific needs but is less commonly used as a general-purpose counter compared to R[7]. Hence, R[7] is the most appropriate choice for incrementing a count in programming for FANUC robots.

- 4. What is the restricted speed setting during T1 mode?
 - A. Full speed
 - **B.** Maximum speed
 - C. Jog and program playback at restricted speeds
 - D. Jog at full speed only

In T1 mode, also known as the Teach mode, the robot operates under controlled speed settings to ensure safe and precise programming of tasks. The restricted speed setting in this mode allows for jog and program playback at reduced speeds. This adjustment is crucial because it enables operators to carefully guide the robot's movements and fine-tune the trajectory without the risks that come with full-speed operation. Using reduced speeds in T1 mode helps ensure that any errors or unexpected movements can be quickly identified and corrected, enhancing both safety and accuracy during the programming phase. It creates an environment where operators can make necessary adjustments and learn how the robot responds to various commands without the urgency or potential hazards associated with faster speeds. Focusing on the specifics of restricted speeds helps in understanding the importance of control during the teaching process, which is vital for effective robot programming and operation.

5. Which method is used to control the robot's motion limits?

- A. Axis Management
- B. DCS
- C. Safety Protocols
- **D. Motion Control Settings**

The method designed specifically to control the robot's motion limits is DCS, which stands for Dual Check Safety. DCS is a feature that enhances the safety and operational limits of industrial robots. It allows for the establishment of safe zones and movement boundaries within which the robot can operate, ensuring that it does not exceed predefined limits that could lead to collisions or other unsafe situations. This capability is critical in applications where the robot interacts closely with humans or sensitive equipment, as it provides a higher layer of safety by defining the space that the robot can safely navigate. Axis Management involves the monitoring and coordination of individual robot joints but does not inherently focus on limiting motion in a safety context. While Safety Protocols establish general safety practices, they may not directly control the robot's motion limits. Motion Control Settings pertain to the command and performance parameters of the robot's movements but do not specifically address the physiological limits regarding safety and interaction with the working environment. Thus, DCS is the most appropriate method for controlling a robot's motion limits through defined safety zones.

6. In regards to position registers, which coordinate element is represented by PR[1,3]?

- A. X coordinate
- B. Y coordinate
- C. Z coordinate
- D. W coordinate

In the context of position registers in FANUC robots, PR[1,3] specifically accesses the coordinate element associated with the Z-axis. In a position register, each coordinate axis typically corresponds to a different element within the register. For instance, the elements are generally represented as follows: -PR[n,1] represents the X coordinate, -PR[n,2] represents the Y coordinate, -PR[n,3] indicates the Z coordinate, and -PR[n,4] might refer to additional elements such as orientation or other parameters linked to movement. Given this structure, PR[1,3] effectively retrieves the value of the Z coordinate for the first position register. Understanding this organization is key for programming and ensuring that the robot operates correctly in a three-dimensional space, allowing for precise movement and task execution.

7. How would you increment Register 7 (R[7]) by 1?

- A. R[7] = R[7] + 2
- B. R[7] = R[7] + 1
- C. R[7]=R[7]++
- D. R[7]+=1

To increment Register 7 (R[7]) by 1, the most straightforward and accurate options would be to add 1 to its current value. This is accomplished effectively by using the statement that directly expresses this operation, which aligns with standard programming practices in robotic languages. The statement that increases the current value of R[7] by 1 is recorded clearly in the form of R[7] = R[7] + 1 or R[7] += 1. Both options reflect the traditional methods of incrementing a variable in programming: the first explicitly adds 1, and the second uses a shorthand notation to achieve the same result. The approach to incrementing through the expression R[7] = R[7] + 2 would incorrectly increase the value by 2, which deviates from the requirement to increment by just 1. Additionally, R[7]++ typically represents a post-increment operation used in many programming languages, but depending on the context and syntax allowed in FANUC programming, it may not be applicable or valid in this scenario. Fundamentally, the correct forms to perform a direct increment by 1 are succinctly captured in the statements that add 1, affirming their

8. Which jog speed allows for precise movements?

- A. VFINE
- **B. FINE**
- C. 100%
- D. 95%

Selecting FINE as the jog speed for precise movements is the right choice because it enables the robot to execute movements at a slower, more controlled pace. This slower speed minimizes the risk of overshooting the target position, allowing for fine adjustments and accurate placements. In robotic programming and operation, the FINE jog mode is particularly useful for delicate tasks that require a higher level of precision. In contrast, the VFINE jog speed is slightly faster than FINE and, while still focused on precise movement, may not allow for as much control during the final approach to a target or specific position. The percentages, such as 100% or 95%, refer to the overall jog speed at which the robot operates and may cause quicker, less controlled movements, making them less suitable for tasks requiring accuracy. Overall, FINE is designed specifically for those scenarios where precision is critical.

9. What key combination is used to record a program in FANUC?

- A. CTRL + RECORD
- B. CTRL + POINT
- C. SHIFT + PROGRAM
- D. SHIFT + POINT

In FANUC robots, the key combination used to record a program is SHIFT + POINT. This combination is essential for the programming process, as it initiates the recording mode on the controller, allowing the user to define and save the positions and movements that the robot will execute. Utilizing this combination enables the user to easily capture vital programming data while ensuring accuracy and efficiency in setting up the robot's tasks. Understanding the functionality behind this key combination is crucial for effective programming and operation of FANUC robots. The other key combinations provided do not serve this specific purpose in the FANUC programming environment.

10. How do you engage step mode on a FANUC robot?

- A. Press the STEP key only
- B. Hold FWD while pressing the STEP key
- C. Press the STEP key and hold shift while pressing FWD or BWD
- D. Access the system menu settings

Engaging step mode on a FANUC robot allows for precise control of the robot's movements by allowing it to execute one motion segment at a time. This mode is essential during programming and troubleshooting because it enhances operator control and safety. The correct method involves pressing the STEP key while holding the shift key and pressing either the FWD (forward) or BWD (backward) keys. This combination ensures that the robot operates in a step mode, allowing incremental movement rather than continuous operation. The shift key is a crucial element in this process, as it modifies the function of the STEP key, enabling the step operation. The other methods listed do not effectively engage step mode. Simply pressing the STEP key without additional conditions will not activate the desired mode; it requires the simultaneous pressing of keys. Accessing the system menu settings is related to configuring the robot but does not pertain directly to engaging step mode during operation. Hence, the combination of keys involving the STEP and shift keys is the definitive method for engaging step mode effectively.