FAA Part 107 Drone Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. Which of the following describes the characteristics of stable air?
 - A. Good visibility and showery precipitation
 - B. Poor visibility and steady precipitation
 - C. High winds and stormy conditions
 - D. Good visibility with turbulent conditions
- 2. How often does a drone pilot need to renew their Part 107 certification?
 - A. Every two years
 - B. Every five years
 - C. Every year
 - D. There is no expiration for the certification
- 3. What should a remote pilot do if they are uncertain about airport operations?
 - A. Consult the Airport Facilities Directory
 - B. Contact another pilot
 - C. Attempt to land without guidance
 - D. Ignore regulations
- 4. How does a high relative humidity affect weather above a low-level temperature inversion?
 - A. It leads to strong thunderstorms
 - B. It causes icing conditions
 - C. It can produce fog and low clouds
 - D. It leads to clear weather
- 5. What is considered an adequate method for maintaining situational awareness when flying a drone?
 - A. Flying without visual contact
 - B. Utilizing a visual observer or maintaining VLOS
 - C. Relying solely on GPS
 - D. Using only the drone's cameras

- 6. Who is responsible for inspecting the small UAS for safety before flight?
 - A. Owner of the small UAS
 - **B.** Visual observer
 - C. Remote pilot-in-command
 - D. Flight instructor
- 7. What should a pilot do if they encounter a manned aircraft while flying?
 - A. Continue flying without interruption
 - B. Ascend to a higher altitude immediately
 - C. Yield the right of way to the manned aircraft
 - D. Report the sighting to the nearest control tower
- 8. What risk management strategy should drone pilots employ?
 - A. Ignoring weather updates
 - B. Conducting a thorough risk assessment before every flight
 - C. Flying as high as possible
 - D. Choosing random flight paths
- 9. What characterizes standing lenticular altocumulus clouds?
 - A. They show significant movement
 - B. They have smooth, polished edges
 - C. They indicate light turbulence
 - D. They form primarily during winter
- 10. What is the general effect of increased altitude on UA lift?
 - A. Increased lift
 - B. Decreased lift
 - C. No effect on lift
 - D. Variable effect based on UA model

Answers

- 1. B 2. A 3. A 4. C 5. B 6. C 7. C 8. B 9. B 10. B

Explanations

1. Which of the following describes the characteristics of stable air?

- A. Good visibility and showery precipitation
- B. Poor visibility and steady precipitation
- C. High winds and stormy conditions
- D. Good visibility with turbulent conditions

Stable air is characterized by a well-defined temperature gradient that inhibits vertical motions, leading to consistent and steady weather conditions. When air is stable, it tends to resist upward movement, meaning that clouds, if they form, are typically layer-like and can produce steady precipitation rather than intermittent showers. This scenario often results in poor visibility due to low-hanging clouds or fog that can accompany steady rain. In the context of stable air, the conditions support uniform temperature and moisture distribution, which leads to less turbulence and fewer sudden weather changes. The other options describe conditions that are more associated with unstable air, which is characterized by turbulence, good to moderate visibility but often with abrupt weather shifts.

2. How often does a drone pilot need to renew their Part 107 certification?

- A. Every two years
- B. Every five years
- C. Every year
- D. There is no expiration for the certification

A drone pilot needs to renew their Part 107 certification every two years. This requirement is in place to ensure that pilots remain knowledgeable about current regulations, technology, and safety practices associated with unmanned aircraft operations. It serves as a mechanism for the FAA to ensure that drone operators are up to date with any changes in rules or operational techniques that may affect flight safety. Maintaining proficiency through renewal helps enhance safety in the skies and assures the FAA that pilots are consistently adhering to the standards set for safe drone operation. Regular renewal of certification can also encourage pilots to engage in ongoing education regarding new technologies and changes in aviation regulations, which is essential in the rapidly evolving field of drone operation.

3. What should a remote pilot do if they are uncertain about airport operations?

- A. Consult the Airport Facilities Directory
- B. Contact another pilot
- C. Attempt to land without guidance
- D. Ignore regulations

Consulting the Airport Facilities Directory is the right course of action if a remote pilot is uncertain about airport operations. This directory provides comprehensive information about airports, including runways, operational hours, traffic patterns, and communication frequencies. It's a vital resource for understanding the specific operational characteristics and requirements of the airport in question. By using this directory, the remote pilot can obtain critical, accurate information that helps ensure safety and compliance with aviation regulations. While contacting another pilot may seem like a reasonable option for gathering information, this person may not have the most up-to-date or relevant knowledge about that specific airport's operations. Attempting to land without guidance would be highly unsafe and is not recommended, as it disregards proper protocol and risks not only personal safety but the safety of others. Ignoring regulations is never an acceptable approach, as it can lead to serious legal repercussions and operational hazards. Therefore, referring to the Airport Facilities Directory is the most reliable and responsible option for a remote pilot to take when faced with uncertainty about airport operations.

- 4. How does a high relative humidity affect weather above a low-level temperature inversion?
 - A. It leads to strong thunderstorms
 - B. It causes icing conditions
 - C. It can produce fog and low clouds
 - D. It leads to clear weather

High relative humidity can significantly influence weather conditions occurring above a low-level temperature inversion. When high humidity exists beneath such an inversion, the air is saturated with moisture. This saturation can result in the formation of fog and low clouds, as the moisture present in the air accumulates and condenses when it reaches its dew point. In terms of atmospheric phenomena, low-level temperature inversions occur when a layer of warm air traps cooler air below it. The cooler air can become saturated with moisture, preventing it from rising. Consequently, as the humidity remains high, the moisture may condense into tiny water droplets, leading to the development of fog or low clouds in that trapped layer of air. In contrast, conditions leading to strong thunderstorms, icing, or clear weather would not typically occur directly as a result of high relative humidity in the context of a low-level temperature inversion. Thunderstorms usually require rising air and instability, icing occurs at higher altitudes and lower temperatures, and clear weather is more typical when the air is less humid and not trapped beneath an inversion layer.

- 5. What is considered an adequate method for maintaining situational awareness when flying a drone?
 - A. Flying without visual contact
 - B. Utilizing a visual observer or maintaining VLOS
 - C. Relying solely on GPS
 - D. Using only the drone's cameras

Maintaining situational awareness is a critical aspect of safe drone operation under FAA Part 107 regulations. An effective method for ensuring situational awareness while flying a drone is through the use of a visual observer or by maintaining visual line of sight (VLOS). When a pilot maintains VLOS, they can see the drone at all times without the aid of binoculars or other visual enhancement devices. This allows for immediate reaction to any obstacles, changes in the environment, or other aircraft in the vicinity. A visual observer can also assist in maintaining situational awareness by watching the drone and the surrounding airspace, enabling the pilot to focus on control and navigation without missing important visual cues. This cooperation helps reduce the risk of collisions and enhances overall safety during flight operations. Using only GPS or relying solely on the drone's cameras does not provide a full understanding of the surrounding environment, nor does it ensure that the pilot is aware of nearby hazards, which could lead to unsafe situations. Additionally, flying without visual contact entirely removes situational awareness and is not compliant with FAA regulations. Such practices can significantly increase the risk of accidents and are therefore not considered adequate for maintaining safety during drone operations.

- 6. Who is responsible for inspecting the small UAS for safety before flight?
 - A. Owner of the small UAS
 - B. Visual observer
 - C. Remote pilot-in-command
 - D. Flight instructor

The remote pilot-in-command holds the ultimate responsibility for ensuring that the small unmanned aircraft system (UAS) is safe for flight. This entails conducting thorough pre-flight inspections to identify any mechanical issues, equipment malfunctions, or safety concerns that could compromise the operation. The remote pilot-in-command must ensure that the aircraft is in a condition for safe operation, which includes checking battery levels, ensuring the aircraft is free from physical damage, and verifying that all systems are functioning correctly. While the owner of the small UAS might have a vested interest in the maintenance and safety of the aircraft, and a visual observer and flight instructor may assist in various aspects of the operation, the final responsibility for the operational readiness of the aircraft rests with the remote pilot-in-command. This responsibility is a key aspect of the regulations outlined in the FAA Part 107, emphasizing the importance of diligent safety practices in drone operations.

7. What should a pilot do if they encounter a manned aircraft while flying?

- A. Continue flying without interruption
- B. Ascend to a higher altitude immediately
- C. Yield the right of way to the manned aircraft
- D. Report the sighting to the nearest control tower

Yielding the right of way to a manned aircraft is essential for a safe and compliant operation of a drone. According to FAA regulations, when a remote pilot encounters a manned aircraft, they are required to give way to the manned aircraft in order to avoid potential collisions. Manned aircraft have the right of way over unmanned aircraft because they are typically larger, faster, and are operating in airspace that may also be used by drones. The responsibility lies with the drone pilot to take corrective action, which may include altering their flight path, descending, or flying at a different altitude to ensure that they do not interfere with the operation of the manned aircraft. Safety is paramount in aviation, and the ability to yield to other aircraft is a crucial part of maintaining safe airspace. While other actions such as reporting the sighting may be important in specific contexts, the immediate priority should always be to yield to the right of way to ensure safety above all else.

8. What risk management strategy should drone pilots employ?

- A. Ignoring weather updates
- B. Conducting a thorough risk assessment before every flight
- C. Flying as high as possible
- D. Choosing random flight paths

Conducting a thorough risk assessment before every flight is a critical risk management strategy for drone pilots. This process involves evaluating various factors that could impact the safety and success of the flight, such as weather conditions, airspace restrictions, potential obstacles, and equipment functionality. By systematically identifying and analyzing these risks, pilots can make informed decisions that enhance safety and reduce the likelihood of incidents. Effective risk assessment also involves pre-flight checks and ongoing evaluations throughout the flight. This helps ensure that any changes in the environment or unforeseen conditions can be managed appropriately. By taking a proactive approach to risk management, pilots demonstrate their commitment to safety and compliance with regulations, which is essential in operating under FAA Part 107 guidelines. In contrast, ignoring weather updates, flying as high as possible, or choosing random flight paths introduce significant risks into drone operations, as they overlook critical factors that need to be considered for safe and efficient flight.

9. What characterizes standing lenticular altocumulus clouds?

- A. They show significant movement
- B. They have smooth, polished edges
- C. They indicate light turbulence
- D. They form primarily during winter

Standing lenticular altocumulus clouds are characterized by their smooth, polished edges, which result from the way air flows over a mountain ridge or other topographic feature. As moist air is forced upwards, it cools and condenses to form these clouds, often resembling a lens shape. This smooth appearance is a direct indicator of the laminar flow of air, contrasting with other cloud types that exhibit a more ragged or chaotic structure. The combination of the smooth edges and their formation associated with stable atmospheric conditions highlights their unique nature in the cloud classification system. While these clouds can indicate the presence of turbulence in the air, especially in the mountains where they form, the polished edges remain their defining characteristic. Therefore, understanding the visual features of standing lenticular clouds is essential for assessing atmospheric conditions and potential flight safety for drone operations.

10. What is the general effect of increased altitude on UA lift?

- A. Increased lift
- **B.** Decreased lift
- C. No effect on lift
- D. Variable effect based on UA model

The correct answer highlights that increased altitude leads to a decrease in lift for unmanned aircraft (UA). This phenomenon occurs mainly due to the reduction in air density as altitude increases. Lift is generated by the movement of air over the wings of an aircraft, and this movement is more effective in denser air. As the altitude increases, the air becomes thinner, which means there are fewer air molecules for the wings to generate lift. Consequently, the ability of the UA to maintain or gain altitude becomes more challenging as it ascends into thinner air. Pilots and operators must be aware of this relationship between altitude and lift, as it can significantly impact the performance, stability, and control of the drone during flight, particularly in high-altitude operations. Understanding this concept is critical for drone operators, as it informs decisions related to flight planning, load capacity, and safety protocols at different altitudes.