

# FAA En-Route Radar Controller Certification (CKT-2) Practice Test (Sample)

## Study Guide



**Everything you need from our exam experts!**

**This is a sample study guide. To access the full version with hundreds of questions,**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>6</b>  |
| <b>Answers</b> .....               | <b>9</b>  |
| <b>Explanations</b> .....          | <b>11</b> |
| <b>Next Steps</b> .....            | <b>17</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.**

## 7. Use Other Tools

**Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!**

SAMPLE

## **Questions**

SAMPLE

- 1. What type of separation must the receiving controller maintain during a point out?**
  - A. Visual separation**
  - B. Radar separation**
  - C. Vertical separation**
  - D. Standard separation**
- 2. After accepting a handoff on a nonbeacon aircraft, how should you confirm its identity?**
  - A. By checking the flight plan details**
  - B. By advising the aircraft of its position**
  - C. By requesting the pilot to state their altitude**
  - D. By performing a visual identification**
- 3. What is an altitude readout in radar displays?**
  - A. An aircraft's speed**
  - B. An aircraft's altitude in 50-foot increments**
  - C. An altitude transmitted via a Mode C transponder in 100-foot increments**
  - D. A visual representation of flight paths**
- 4. What phrase is used to inform the controller initiating a point out that the aircraft is identified and can enter the airspace without a communication transfer?**
  - A. Point out confirmed**
  - B. Point out approved**
  - C. Traffic identified**
  - D. Radar contact established**
- 5. Which of the following is NOT one of the four intensities of structural icing?**
  - A. Severe**
  - B. Extreme**
  - C. Light**
  - D. Moderate**

**6. What does IMC indicate regarding a pilot's navigation capabilities?**

- A. Navigation using visual cues**
- B. Navigation using instrument references inside the cockpit**
- C. Navigation without any aids**
- D. Navigation based on radar information**

**7. What is essential when an aircraft is considered overdue?**

- A. Immediate communication with local authorities**
- B. Extensive search operations**
- C. Coordination of all available resources**
- D. Monitoring only until the next scheduled check-in**

**8. The area of precipitation returns connected with a thunderstorm on a radar screen is generally what compared to the actual cloud?**

- A. Larger than the actual cumulonimbus cloud**
- B. Equal in size to the actual cumulonimbus cloud**
- C. Frequently smaller than the actual cumulonimbus cloud**
- D. Consistent across all weather types**

**9. Which type of turbulence momentarily causes slight, erratic changes in altitude and/or attitude?**

- A. Light Turbulence**
- B. Moderate Turbulence**
- C. Severe Turbulence**
- D. Extreme Turbulence**

**10. What should be considered to obtain the desired track for a radar vector?**

- A. Altitude changes**
- B. Traffic density in the area**
- C. Effects of wind**
- D. Fuel consumption rates**

## **Answers**

SAMPLE

1. B
2. B
3. C
4. B
5. B
6. B
7. C
8. C
9. A
10. C

SAMPLE

## **Explanations**

SAMPLE

**1. What type of separation must the receiving controller maintain during a point out?**

- A. Visual separation**
- B. Radar separation**
- C. Vertical separation**
- D. Standard separation**

In the context of air traffic control, particularly during a point out, the receiving controller must maintain radar separation. This is because a point out involves one controller notifying another about the intention to transfer control of an aircraft. Radar separation ensures that the aircraft are adequately spaced apart based on real-time data provided by radar systems, which is critical for maintaining safety in the airspace. Radar separation takes into account both horizontal and vertical distances between aircraft as displayed on radar screens, allowing for precise tracking and management of their movements. This separation is vital for preventing potential conflicts and collisions in busy airspace. While other forms of separation may be applicable in different scenarios, radar separation is the specific requirement during a point out to ensure a safe transition of control between controllers. Visual separation, vertical separation, and standard separation serve important roles in different contexts but do not apply specifically to the mechanics of a point out, where the emphasis is on how the aircraft are monitored and managed using radar technology.

**2. After accepting a handoff on a nonbeacon aircraft, how should you confirm its identity?**

- A. By checking the flight plan details**
- B. By advising the aircraft of its position**
- C. By requesting the pilot to state their altitude**
- D. By performing a visual identification**

Confirming the identity of a nonbeacon aircraft after accepting a handoff is critical for maintaining effective air traffic control. Advising the aircraft of its position is a practical method of identification. This approach not only verifies the aircraft's identity via their acknowledgment but also provides them with situational awareness regarding their location in relation to other traffic and enroute waypoints. When you inform the aircraft of its position, you prompt them to confirm their awareness and alignment with the flight plan, which strengthens the communication between the controller and the pilot. Other methods like checking the flight plan details or requesting the pilot to state their altitude may also provide additional information, but they do not directly confirm identity in a real-time context as effectively as position reporting. Visual identification is least applicable in many cases, especially for nonbeacon aircraft flying at altitude, where visual contact may be challenging or impossible. Thus, advising the aircraft of its position creates a reliable method for identity confirmation while also keeping the lines of communication open and reinforced.

### 3. What is an altitude readout in radar displays?

- A. An aircraft's speed
- B. An aircraft's altitude in 50-foot increments
- C. An altitude transmitted via a Mode C transponder in 100-foot increments**
- D. A visual representation of flight paths

An altitude readout in radar displays refers to the altitude transmitted by an aircraft's Mode C transponder, which provides information about the aircraft's altitude in 100-foot increments. This data is crucial for air traffic controllers as it aids in maintaining proper vertical separation between aircraft, ensuring safe and efficient operations within controlled airspace. Mode C transponders are equipped in most commercial aircraft and automatically transmit the aircraft's altitude along with its identity and position information. This enables radar systems to accurately display an aircraft's altitude in real-time, allowing controllers to monitor and manage multiple aircraft effectively. In contrast, other options do not accurately describe an altitude readout: speed is unrelated to altitude readouts, while 50-foot increments are not typically used in this context. A visual representation of flight paths pertains more to flight trajectory than current altitude data. Thus, knowing that an altitude readout comes from a Mode C transponder and is displayed in 100-foot increments is essential for understanding how altitude information is processed in air traffic control systems.

### 4. What phrase is used to inform the controller initiating a point out that the aircraft is identified and can enter the airspace without a communication transfer?

- A. Point out confirmed
- B. Point out approved**
- C. Traffic identified
- D. Radar contact established

The phrase "Point out approved" is specifically used to communicate to the controller who is initiating a point out that the aircraft in question is positively identified and can enter the designated airspace without needing to switch communications. This phrase serves to facilitate a smooth transition of air traffic and ensures that all parties are aware that the aircraft is recognized and authorized to proceed. When a controller uses "Point out approved", it indicates that the procedure is acknowledged and there is no requirement for the aircraft to re-establish communication with the new sector or controller immediately. This phrase is crucial for maintaining an efficient flow of traffic and ensuring that safety protocols are adhered to while minimizing unnecessary delays. In contrast, the other phrases in the list, such as "Traffic identified" or "Radar contact established," may indicate that the aircraft's position has been confirmed but do not specifically grant the authorization to enter the airspace or deal with communication transfers as directly as "Point out approved" does. Understanding the specific terminology used in these scenarios is essential for effective air traffic control operations.

**5. Which of the following is NOT one of the four intensities of structural icing?**

- A. Severe**
- B. Extreme**
- C. Light**
- D. Moderate**

The correct answer, "Extreme," is not recognized as one of the four standard intensities of structural icing. The National Weather Service and aviation guidelines define the intensities of structural icing as light, moderate, severe, and extreme is simply not part of that classification system. Understanding the correct classification of icing is critical for aviation safety, as each intensity level has specific implications for aircraft operation and risk management. Light icing typically has minimal impact, while moderate and severe icing conditions can significantly affect aircraft performance and pilot decision-making. Knowing these classifications helps pilots and air traffic controllers assess weather conditions and make informed operational choices.

**6. What does IMC indicate regarding a pilot's navigation capabilities?**

- A. Navigation using visual cues**
- B. Navigation using instrument references inside the cockpit**
- C. Navigation without any aids**
- D. Navigation based on radar information**

IMC, which stands for Instrument Meteorological Conditions, refers specifically to weather conditions that require pilots to rely primarily on their instruments for navigation and aircraft control rather than visual cues. When operating under IMC, visibility is often reduced due to factors such as clouds, fog, or precipitation, which negates the possibility of navigating by visual references outside the cockpit. In this context, the correct understanding is that under IMC, pilots must utilize the instruments located inside the cockpit, such as altimeters, artificial horizons, and other navigation devices, to make informed decisions about their flight path, altitude, and other critical flight parameters. This reliance on instruments is a fundamental aspect of flying in adverse weather conditions, as it ensures that pilots can maintain control of the aircraft safely, even when external visibility is compromised. In contrast, the other options do not accurately represent the nature of navigation under IMC, as they either describe visual navigation or do not reflect the reliance on instruments that is essential in these conditions.

## 7. What is essential when an aircraft is considered overdue?

- A. Immediate communication with local authorities**
- B. Extensive search operations**
- C. Coordination of all available resources**
- D. Monitoring only until the next scheduled check-in**

When an aircraft is deemed overdue, coordinating all available resources is vital for efficiently managing the situation and ensuring a thorough response. This coordination includes various stakeholders such as air traffic control, search and rescue teams, local law enforcement, and possibly even the aircraft's operating company. These resources are necessary to formulate a plan of action, share critical information, and streamline efforts in every phase of the response to locate the aircraft and the people onboard. Effective coordination helps in determining the appropriate search area, consolidating information from various sources, and deploying assets such as aircraft, boats, and ground search teams to maximize the chances of locating the overdue aircraft quickly and effectively. Being proactive in resource coordination can significantly enhance the chances of a successful outcome, which is crucial in time-sensitive scenarios involving missing aircraft. Looking at the other options, immediate communication with local authorities can certainly be part of the procedure, but it is not sufficient on its own without the coordination of resources. Extensive search operations may be necessary but should stem from a coordinated plan rather than being an isolated response. Monitoring until the next scheduled check-in is inadequate because it fails to address the urgency and importance of taking immediate action when an aircraft is overdue. Thus, the focus on coordination encapsulates a comprehensive and organized approach essential

## 8. The area of precipitation returns connected with a thunderstorm on a radar screen is generally what compared to the actual cloud?

- A. Larger than the actual cumulonimbus cloud**
- B. Equal in size to the actual cumulonimbus cloud**
- C. Frequently smaller than the actual cumulonimbus cloud**
- D. Consistent across all weather types**

The area of precipitation returns associated with a thunderstorm on a radar screen is typically smaller than the actual cumulonimbus cloud. This occurs due to the nature of how radar detects precipitation. The radar primarily picks up the precipitation particles, such as rain droplets, while the cloud itself can extend far beyond where the precipitation is occurring. Cumulonimbus clouds, which are associated with thunderstorms, can have an extensive vertical development and can contain a variety of weather phenomena. The radar can show an area of intense precipitation that might not encompass the full structure of the cloud, especially in cases where the updrafts and downdrafts within the thunderstorm create variations in precipitation distribution. Therefore, while the cumulonimbus cloud may spread out considerably in the atmosphere, the radar might only capture a portion of that cloud where precipitation is occurring, leading to radar returns that are often smaller than the actual cloud size. This concept is important for pilots and air traffic controllers as they assess the size and impact of thunderstorms based on radar data.

**9. Which type of turbulence momentarily causes slight, erratic changes in altitude and/or attitude?**

- A. Light Turbulence**
- B. Moderate Turbulence**
- C. Severe Turbulence**
- D. Extreme Turbulence**

Light turbulence is characterized by momentary, erratic changes in altitude and/or attitude but does not cause major disturbances to the aircraft. During light turbulence, aircraft may experience slight, infrequent bumps or jolts; however, these changes in position are generally manageable and do not require significant pilot intervention. The passengers may feel a mild strain against their seatbelts, but the shaking is mild enough that it does not pose a safety risk. Understanding this level of turbulence is crucial for pilots and air traffic controllers, as it helps in preparing for incoming weather conditions and communicating expected turbulence to passengers. In contrast, moderate, severe, and extreme turbulence are associated with more pronounced and potentially dangerous movements of the aircraft, which can lead to more serious operational challenges.

**10. What should be considered to obtain the desired track for a radar vector?**

- A. Altitude changes**
- B. Traffic density in the area**
- C. Effects of wind**
- D. Fuel consumption rates**

To obtain the desired track for a radar vector, considering the effects of wind is essential. Wind can significantly influence the aircraft's path relative to the ground. When providing vectors, controllers must account for the wind direction and speed because it affects the true track that the aircraft will follow. This consideration ensures that the aircraft can maintain its intended course, arrive at its destination efficiently, and avoid wind drift, which could lead to unintended deviations from the planned route. Understanding how wind impacts an aircraft allows controllers to issue more accurate vectors that compensate for drift, resulting in timely arrival and optimal flight paths. By integrating this information into the radar vectoring process, controllers can enhance safety and efficiency in air traffic management.

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://faaenrouteradarckt2.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**