Extinguisher Type B (TFM02) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. Which extinguishers cannot be used if they do not meet the minimum 1-A rating?
 - A. Halogenated extinguishers
 - B. Smaller extinguishers rated Class B or C
 - C. Water type extinguishers
 - D. Wet chemical extinguishers
- 2. What type of cylinder is referred to as a low pressure cylinder?
 - A. High-pressure cylinder
 - B. Gas-filled cylinder
 - C. Standard cylinder
 - D. Low-pressure cylinder
- 3. Which principle is primarily associated with the operation of certain fire extinguishers?
 - A. Saponification
 - **B.** Combustion
 - C. Heat Absorption
 - **D.** Coolant Effect
- 4. Who is responsible for performing the annual conductivity test?
 - A. Extinguisher manufacturer
 - B. Fire safety officer
 - C. Building maintenance staff
 - D. Any certified technician
- 5. What is a common use for multipurpose dry chemicals?
 - A. Only for Class A fires
 - **B.** Only for Class B fires
 - C. For both Class A and Class B fires
 - D. Only for electrical fires

- 6. What gas is commonly used as an expellant in stored-pressure fire extinguishers?
 - A. Carbon Dioxide
 - **B. Dry Nitrogen**
 - C. Air
 - D. Helium
- 7. How often must CO2 portable extinguishers undergo hydrostatic testing?
 - A. Every year
 - B. Every 2 years
 - C. Every 5 years
 - D. Every 10 years
- 8. An extinguisher weighing over 40 lbs should be installed so the top is no more than how many feet from the ground?
 - A. 2 ft
 - B. 3 ft
 - C. 3.5 ft
 - D. 4 ft
- 9. How often do pump tank calcium chloride based antifreeze types of extinguishers need to be recharged?
 - A. Monthly
 - **B.** Annually
 - C. Every two years
 - D. Only when empty
- 10. When should leak tests on stored pressure extinguishers be performed?
 - A. Monthly
 - **B.** After Recharge
 - C. Yearly
 - **D. Before Installation**

Answers

- 1. B 2. D 3. A 4. D 5. C 6. B 7. C 8. C 9. B 10. B

Explanations

1. Which extinguishers cannot be used if they do not meet the minimum 1-A rating?

- A. Halogenated extinguishers
- B. Smaller extinguishers rated Class B or C
- C. Water type extinguishers
- D. Wet chemical extinguishers

The correct response highlights that extinguishers with a Class B or C rating that do not meet the minimum 1-A rating are unsuitable for certain applications, particularly those involving ordinary combustible materials as specified by the 1-A rating. This is essential because the 1-A rating indicates that the extinguisher is capable of effectively putting out fires involving ordinary combustibles (like wood, paper, and cloth). In the context of fire safety, extinguishers are categorized based on the type of materials they can handle. The Class B designation applies to flammable liquids and gases, while Class C focuses on electrical fires. However, without meeting the minimum 1-A rating for extinguishers that would also address ordinary combustibles, these smaller extinguishers could be inadequate in situations where such materials are present along with flammable liquids or electrical hazards. Therefore, reliance on extinguishers that lack the 1-A rating could lead to ineffective fire suppression. This understanding is pivotal for ensuring safety and compliance with fire safety regulations.

2. What type of cylinder is referred to as a low pressure cylinder?

- A. High-pressure cylinder
- B. Gas-filled cylinder
- C. Standard cylinder
- D. Low-pressure cylinder

A low-pressure cylinder is specifically designed to contain gases or liquids at pressures that are below a certain threshold, typically around 15 psi and below. These cylinders are constructed to withstand lower internal pressures, which allows for a safer operation in environments where high pressures are not necessary or practical. They find uses in a variety of applications, such as in certain types of fire extinguishers or gas storage, where maintaining a controlled and safe pressure is essential. Other types of cylinders, like high-pressure cylinders, are built to handle significantly larger pressures, and their design, materials, and safety features differ considerably from low-pressure cylinders. Gas-filled cylinders can refer to a range of pressure types but do not specifically denote low-pressure conditions. Meanwhile, a standard cylinder may imply a generic use without specific reference to pressure classifications, so it does not accurately define the low-pressure context being discussed.

3. Which principle is primarily associated with the operation of certain fire extinguishers?

- A. Saponification
- **B.** Combustion
- C. Heat Absorption
- **D.** Coolant Effect

The principle primarily associated with the operation of certain fire extinguishers, specifically foam extinguishers, is saponification. This process involves the chemical reaction that occurs when the foam from the extinguisher comes into contact with burning materials, especially those that are oil-based. Saponification creates a barrier between the fuel and the oxygen, effectively smothering the fire and preventing re-ignition. This makes it particularly effective for Class B fires, which involve flammable liquids. Understanding saponification is crucial for utilizing extinguishers correctly in fire scenarios, as it highlights the importance of chemical interactions in fire suppression. Fire extinguishers that utilize this principle, therefore, are designed specifically for situations involving flammable solvents or liquids.

4. Who is responsible for performing the annual conductivity test?

- A. Extinguisher manufacturer
- **B.** Fire safety officer
- C. Building maintenance staff
- D. Any certified technician

The responsibility for performing the annual conductivity test falls to any certified technician. This is primarily because a certified technician possesses the necessary training and expertise to carry out the test safely and effectively. A conductivity test is critical for ensuring that fire extinguishers, particularly those that contain Class B substances, are functioning correctly and ready for use in case of an emergency. Technicians are trained to understand the specific requirements and standards associated with fire extinguisher maintenance, including the necessary tests such as conductivity. Their certification ensures they are competent in assessing and maintaining the equipment according to industry standards, which is crucial for compliance with safety regulations. While manufacturers and safety officers may play roles in overseeing proper use and inventory of extinguishers, it is the certified technician who is qualified to conduct the detailed testing required to ensure the extinguishers will perform correctly when called upon. Building maintenance staff may assist with general upkeep, but they typically do not have the specific training to perform specialized tests like conductivity checks.

5. What is a common use for multipurpose dry chemicals?

- A. Only for Class A fires
- **B.** Only for Class B fires
- C. For both Class A and Class B fires
- D. Only for electrical fires

Multipurpose dry chemical extinguishers are designed to combat a variety of fire types, making them particularly versatile. Their formulation typically includes agents like monoammonium phosphate, which is effective against Class A fires, which involve ordinary combustibles such as wood and paper, as well as Class B fires, which involve flammable liquids like gasoline or oil. By covering both Class A and Class B fires, these extinguishers can be used in a wide range of situations, which is crucial in emergencies where the nature of the fire may not be immediately identifiable. This adaptability makes multipurpose dry chemical extinguishers a preferred choice in homes, businesses, and industrial settings, offering users the confidence that they can address different fire risks with a single piece of equipment. The other options narrow the scope of use to just one class of fire, which does not reflect the multifunctionality of these extinguishers. For instance, stating they are only for Class A or Class B fires eliminates the capability they possess to effectively fight both types. Similarly, limiting their use to electrical fires disregards their broader application across various fire classes.

6. What gas is commonly used as an expellant in stored-pressure fire extinguishers?

- A. Carbon Dioxide
- **B.** Dry Nitrogen
- C. Air
- D. Helium

The use of dry nitrogen as an expellant in stored-pressure fire extinguishers is significant due to its non-reactive properties. It effectively helps to propel the extinguishing agent out of the extinguisher while maintaining the integrity of the contents. Nitrogen is ideal because it does not support combustion, making it a safe choice for fire suppression devices. In contrast, other gases like carbon dioxide, while effective for some extinguishers, are primarily used as an extinguishing agent rather than as an expellant. Air, although it can be involved in the pressurization process, may contain moisture and impurities that can affect the performance of the extinguisher. Helium, on the other hand, is not commonly used in standard fire extinguishing applications due to its cost and availability, making dry nitrogen the preferred and practical choice for effective operation in stored-pressure extinguishers.

7. How often must CO2 portable extinguishers undergo hydrostatic testing?

- A. Every year
- B. Every 2 years
- C. Every 5 years
- D. Every 10 years

CO2 portable extinguishers must undergo hydrostatic testing every 5 years to ensure their structural integrity and safe operation. This testing is crucial because over time, the high-pressure cylinder that contains the CO2 can develop weaknesses or defects that may not be visible during regular inspections. Hydrostatic testing involves filling the cylinder with water and pressurizing it to detect leaks, bulges, or other failures that could lead to catastrophic failure if the extinguisher is used in an emergency. By adhering to this 5-year testing requirement, owners can be confident that their extinguishers are in proper working condition and safe to use when needed.

- 8. An extinguisher weighing over 40 lbs should be installed so the top is no more than how many feet from the ground?
 - A. 2 ft
 - B. 3 ft
 - C. 3.5 ft
 - D. 4 ft

An extinguisher weighing over 40 lbs should be installed so that the top is no more than 3.5 feet from the ground to ensure that it is easily accessible in an emergency situation. The reasoning behind this height restriction is primarily related to usability and safety; larger extinguishers can be cumbersome, and placing them at a height greater than 3.5 feet may make them difficult for many people to reach quickly. This height limit also accommodates a wide range of users, considering that not everyone will be able to reach higher placements effectively. By following this guideline, users can ensure that they can operate the extinguisher without undue strain or difficulty, thus promoting a safer and more effective response to fire emergencies.

- 9. How often do pump tank calcium chloride based antifreeze types of extinguishers need to be recharged?
 - A. Monthly
 - **B.** Annually
 - C. Every two years
 - D. Only when empty

Pump tank calcium chloride based antifreeze extinguishers typically need to be recharged annually to ensure they maintain their effectiveness and are in compliance with safety regulations. This annual recharge helps to replenish the extinguishing agent and tests the integrity of the system, ensuring that it is ready for use in an emergency situation. Regular maintenance, including annual recharging, is crucial for all fire extinguishers to ensure they function effectively when needed, reflecting the standards and guidelines established for fire safety equipment. This also minimizes the risk of malfunction due to degradation of the extinguishing agent over time.

10. When should leak tests on stored pressure extinguishers be performed?

- A. Monthly
- **B.** After Recharge
- C. Yearly
- **D. Before Installation**

The correct timing for performing leak tests on stored pressure extinguishers is after a recharge. This is crucial because when an extinguisher is recharged, it undergoes a pressure change, and there is a possibility that seals or valves may not be fully intact. The leak test ensures that the extinguisher can maintain its proper pressure without any loss over time. This is vital for ensuring the extinguisher is in optimal working condition and ready for use in an emergency. While other intervals, such as monthly or yearly checks, are important for overall maintenance, they do not specifically address the critical need to verify the integrity of the extinguisher's enclosure immediately following a recharge. Performing a leak test before installation is also essential; however, it focuses on ensuring that a new unit is functioning correctly rather than verifying the status of an already charged unit after modifications.