ET ASNT Level II Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What kind of training is necessary for personnel involved in eddy current testing?
 - A. General electronics training
 - B. A specialized training that includes equipment operation and result interpretation
 - C. No training is necessary
 - D. Only safety training is required
- 2. Which factor does not affect the inductance of an eddy current test coil?
 - A. Diameter of coils
 - **B.** Test frequency
 - C. Overall shape of the coils
 - D. Distance from other coils
- 3. When using the linear time-base method in eddy current testing, what is applied to the vertical deflection plates when conditions are balanced?
 - A. A sinusoidal wave in phase with the timing voltage
 - B. A sinusoidal wave 90 degrees out of phase with the timing voltage
 - C. A sawtooth waveform
 - D. Zero net voltage
- 4. Which of the following methods can improve the signal-to-noise ratio in an eddy current test system?
 - A. filtering or differentiation
 - B. phase discrimination
 - C. integration
 - D. all of the above
- 5. If the test frequency increases while the field strength remains constant, what happens to the surface eddy current density?
 - A. Decreases
 - **B.** Increases
 - C. Remains the same
 - D. Could do any of the above

- 6. Which element is NOT typically evaluated during Magnetic Particle Testing?
 - A. Surface and near-surface discontinuities
 - **B.** Subsurface flaws
 - C. Magnetic field strength
 - D. Surface preparation quality
- 7. What kind of discontinuities can eddy current testing typically identify within conductive materials?
 - A. Only internal defects
 - B. Surface and subsurface defects
 - C. Only surface irregularities
 - D. Air gaps between joints
- 8. When a sinusoidal wave is applied in eddy current testing, what does it indicate?
 - A. Balance condition
 - **B.** Unbalance condition
 - C. Probe calibration
 - D. Signal strength
- 9. How does test frequency affect the depth of penetration for eddy currents?
 - A. Higher frequencies allow deeper penetration
 - **B.** Lower frequencies reduce penetration
 - C. Higher frequencies reduce penetration
 - D. All frequencies penetrate equally
- 10. When the voltage applied to a circuit and the current through the circuit both reach their maximums and minimums at the same time, the voltage and current are:
 - A. Additive
 - B. In phase
 - C. Regenerative
 - D. Out of phase

Answers

- 1. B 2. B 3. D 4. D 5. B 6. C 7. B 8. B 9. C 10. B

Explanations

1. What kind of training is necessary for personnel involved in eddy current testing?

- A. General electronics training
- B. A specialized training that includes equipment operation and result interpretation
- C. No training is necessary
- D. Only safety training is required

For personnel involved in eddy current testing, specialized training that encompasses both equipment operation and result interpretation is essential. This type of training ensures that the technicians understand the underlying principles of eddy current testing, which relies on electromagnetic induction to detect surface and near-surface flaws in conductive materials. Specialized training equips personnel with the necessary skills to set up and calibrate the testing equipment correctly, understand the operational parameters, and interpret the resulting data accurately. This knowledge is crucial for identifying defects and determining material properties effectively. Additionally, personnel must learn how to recognize and mitigate potential sources of error in their testing procedures, ensuring reliability and accuracy in their evaluations. General electronics training alone wouldn't provide the specific knowledge and skills needed for eddy current testing, focusing instead on broader electronic principles. Similarly, safety training is important but does not cover the necessary technical expertise required to perform eddy current tests competently. Relying solely on either of these would leave personnel ill-equipped to handle the complexities of eddy current testing accurately. Therefore, specialized training is the correct and comprehensive approach for effective performance in this field.

- 2. Which factor does not affect the inductance of an eddy current test coil?
 - A. Diameter of coils
 - **B.** Test frequency
 - C. Overall shape of the coils
 - D. Distance from other coils

In the context of eddy current testing, inductance is primarily influenced by factors related to the coil's physical characteristics and its interaction with the tested material. The choice of test frequency indeed plays a crucial role in the eddy current testing process, affecting the penetration depth and the eddy currents induced in the material. However, it does not impact the intrinsic inductance of the coil itself. The other factors, such as the diameter of the coils, the overall shape of the coils, and the distance from other coils, directly affect the magnetic field generated by the coil, which in turn influences the inductance. The diameter of the coils can change the inductive properties because a larger diameter tends to increase the inductive reactance, while the shape of the coils can influence how the magnetic field interacts with the test material, further altering the inductance. Additionally, the distance from other coils can also affect inductance due to mutual inductance effects, where the magnetic field from one coil interacts with another. Since the test frequency does not inherently change the inductance of the coil but rather affects the testing parameters and how the eddy currents behave in the test material, this makes it the correct choice for the factor that does not affect inductance.

- 3. When using the linear time-base method in eddy current testing, what is applied to the vertical deflection plates when conditions are balanced?
 - A. A sinusoidal wave in phase with the timing voltage
 - B. A sinusoidal wave 90 degrees out of phase with the timing voltage
 - C. A sawtooth waveform
 - D. Zero net voltage

In the linear time-base method of eddy current testing, the instrument's vertical deflection plates are specifically set to respond to the balanced conditions of the system. When these conditions are achieved, there is no need for any voltage input to drive the vertical deflection plates; thus, a zero net voltage is applied. This zero voltage condition signifies that the detected signal is completely balanced against the reference signal, meaning that any variations or signals detected in the material under investigation are accurately represented without distortion. The intent in this scenario is to ensure that the display of the eddy current signal on the oscilloscope or testing instrument shows only the relevant data reflecting the material's properties, without extraneous influences that would occur if a different voltage were applied. The other options, such as sinusoidal waves in or out of phase with the timing voltage or a sawtooth waveform, would indicate scenarios where a signal is present and would lead to an oscillation or distortion in the displayed results. This would not demonstrate the balanced condition necessary for accurate readings in this testing methodology.

- 4. Which of the following methods can improve the signal-to-noise ratio in an eddy current test system?
 - A. filtering or differentiation
 - **B.** phase discrimination
 - C. integration
 - D. all of the above

Improving the signal-to-noise ratio (SNR) in an eddy current testing system is critical for enhancing the quality of the results obtained. Each of the methods listed contributes to this improvement. Filtering or differentiation helps eliminate unwanted noise from the signal by focusing on the frequencies of interest. This method can either amplify desired signals while suppressing noise or mathematically differentiate the signal to enhance relevant features. Phase discrimination allows for distinguishing between signals based on their phase characteristics. By analyzing the phase relationship between the reference signal and the obtained signal, it becomes possible to enhance the detection of flaws or features of interest, thus improving the SNR. Integration is also a technique that can be applied, particularly in the post-processing stage, where it combines multiple readings over time to create a more stable and higher quality signal. This cumulative effect reduces noise by averaging out random fluctuations that do not correlate with the actual signal being observed. Since all these methods play a role in improving the signal-to-noise ratio, it is correct that the choice encompassing all of the methods is indeed the best answer. Each method contributes to filtering out noise and enhancing the clarity of the signals detected in eddy current testing.

- 5. If the test frequency increases while the field strength remains constant, what happens to the surface eddy current density?
 - A. Decreases
 - **B.** Increases
 - C. Remains the same
 - D. Could do any of the above

When the test frequency increases while the field strength remains constant, the surface eddy current density actually increases. This is primarily due to the skin effect, which causes eddy currents to flow more densely near the surface of a conductive material as frequency rises. At higher frequencies, the alternating current penetrates less deeply into the conductor, leading to a concentration of currents at the surface. As a result, the density of these eddy currents—essentially the amount of electric current flowing per unit area at the surface—increases. Therefore, when the frequency is increased while maintaining the same field strength, more eddy currents are generated closer to the material's surface, resulting in an increase in surface eddy current density. This principle is essential for understanding non-destructive testing techniques, particularly in electromagnetic methods where detecting surface flaws or characteristics is critical.

- 6. Which element is NOT typically evaluated during Magnetic Particle Testing?
 - A. Surface and near-surface discontinuities
 - **B.** Subsurface flaws
 - C. Magnetic field strength
 - D. Surface preparation quality

Magnetic Particle Testing (MT) is widely used for detecting surface and near-surface discontinuities in ferromagnetic materials. This method primarily focuses on flaws that are either open to the surface or close to it, such as cracks and inclusions. In this context, the element that is not typically evaluated during MT is magnetic field strength. While magnetic field strength can impact the effectiveness of the testing method—too weak a field may not capture the indications while a stronger field can provide better sensitivity—it's not a parameter that is specifically measured or assessed as part of the standard evaluation process. Instead, it is more about ensuring that the magnetic field is sufficient to reveal any discontinuities if present. Evaluating surface preparation quality is also critical because a clean and properly prepared surface enhances the reliability of the magnetic particle testing results. Subsurface flaws are beyond the detection capabilities of MT as it can only identify flaws that are visible or near the surface. Therefore, magnetic field strength is not a focus of assessment in the traditional practice of Magnetic Particle Testing, making it the correct response to the question.

7. What kind of discontinuities can eddy current testing typically identify within conductive materials?

- A. Only internal defects
- B. Surface and subsurface defects
- C. Only surface irregularities
- D. Air gaps between joints

Eddy current testing is a highly effective nondestructive testing method used primarily to identify discontinuities in conductive materials. One of its key strengths is the ability to detect both surface and subsurface defects. This is made possible through the principle of electromagnetic induction, where an alternating current induces eddy currents in the material being tested. When these eddy currents encounter discontinuities such as cracks, lifts, or changes in material properties, they cause a change in the impedance of the coil used in the test. This change can be detected and interpreted, allowing technicians to ascertain the presence and extent of the defect. Surface defects are more easily detected due to their direct interaction with the eddy currents; however, certain configurations and testing techniques can also reveal subsurface defects. In contrast, options indicating that only internal defects or only surface irregularities can be identified limit the scope of what eddy current testing can accomplish. The detection of air gaps between joints is also not a primary function of eddy current testing, as this technique focuses primarily on material discontinuities rather than joint separation. The capability to identify both surface and subsurface defects makes this answer the most accurate representation of what eddy current testing can accomplish in practice.

- 8. When a sinusoidal wave is applied in eddy current testing, what does it indicate?
 - A. Balance condition
 - **B.** Unbalance condition
 - C. Probe calibration
 - D. Signal strength

When a sinusoidal wave is applied in eddy current testing, it typically indicates an unbalance condition in the system. In the context of eddy current testing, a sinusoidal wave serves as a reference or standard measure for the impedance changes in the conductive material being tested. In a balanced system, where there are no abnormalities (such as flaws or cracks), the response signal from the eddy currents will closely mimic the applied sinusoidal wave, maintaining a certain phase relationship. However, when there is an unbalance condition, which may be due to material discontinuities, changes in conductivity, or variations in thickness, the output signal will deviate from this sinusoidal reference. This deviation is critical for detecting flaws, as it provides information about the size and nature of the imperfections in the material. Thus, the presence of a sinusoidal wave indicates that the testing system is correctly tuned but is responding to a material condition that is not ideal, signaling the need for further analysis to characterize the unbalance accurately. Understanding this relationship allows technicians to interpret the data effectively and take appropriate action based on the response of the eddy current signal in relation to the applied sinusoidal wave.

- 9. How does test frequency affect the depth of penetration for eddy currents?
 - A. Higher frequencies allow deeper penetration
 - B. Lower frequencies reduce penetration
 - C. Higher frequencies reduce penetration
 - D. All frequencies penetrate equally

In eddy current testing, the frequency of the eddy currents directly influences the depth of penetration into the material being tested. As the frequency increases, the skin effect becomes more pronounced. The skin effect refers to the phenomenon where alternating current tends to flow near the surface of a conductor rather than penetrating deeply. Thus, higher frequencies result in a reduced penetration depth. In contrast, lower frequencies allow for a greater penetration depth, as the currents have a better ability to travel into the material. Therefore, understanding the relationship between frequency and penetration depth is critical for effective eddy current testing, particularly when assessing the condition of materials or detecting flaws. This relationship is essential for technicians to tailor their testing methods based on the specific requirements of the materials they are working with and the types of imperfections they are looking to identify.

- 10. When the voltage applied to a circuit and the current through the circuit both reach their maximums and minimums at the same time, the voltage and current are:
 - A. Additive
 - B. In phase
 - C. Regenerative
 - D. Out of phase

When the voltage and current in a circuit reach their maximum and minimum values simultaneously, they are described as being "in phase." This means that the peaks and troughs of the voltage waveform align perfectly with those of the current waveform. In an in-phase relationship, the energy transfer is efficient because both the voltage and the current are contributing to the power in a synchronized manner. This significantly affects the power factor of the circuit, leading to optimal power usage since power is maximized when both quantities align in timing. In contrast, other terms such as "additive," "regenerative," or "out of phase" do not accurately describe this relationship. While "out of phase" refers to a scenario where voltage and current do not align—resulting in energy losses—"additive" does not pertain to phase relationships but rather to the sum of voltages or currents in a circuit. "Regenerative" is associated with systems that can return energy to the source, which is unrelated to the synchronization of voltage and current. Therefore, being in phase indicates that both waveforms achieve their extremities in unison, optimizing power delivery within the circuit.