

EPA 608 Universal Certification Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What happens to the temperature of vaporizing refrigerant even if the pressure remains constant?**
 - A. It increases steadily**
 - B. It remains unchanged**
 - C. It increases then decreases**
 - D. Temperature glide occurs**
- 2. Under conditions of ARI 740, what capability must self-contained recovery equipment for small appliances have regarding vacuum evacuation?**
 - A. To evacuate to 2" Hg vacuum**
 - B. To evacuate to 4" Hg vacuum**
 - C. To evacuate to 8" Hg vacuum**
 - D. To evacuate to 10" Hg vacuum**
- 3. True or False: CFCs have a higher ozone depletion potential (ODP) than HCFCs.**
 - A. True**
 - B. False**
 - C. Only in closed systems**
 - D. Only in open systems**
- 4. Which regulation outlines standards for managing refrigerants?**
 - A. Clean Air Act**
 - B. Resource Conservation and Recovery Act**
 - C. Safe Drinking Water Act**
 - D. Occupational Safety and Health Act**
- 5. Which piece of equipment is essential for the recovery of refrigerants?**
 - A. Compressor**
 - B. Recovery machine**
 - C. Expansion valve**
 - D. Filter drier**

6. What is R-134A commonly used as a replacement for?

- A. R-22**
- B. R-404A**
- C. R-12**
- D. R-410A**

7. What is the purpose of the process stub on small appliances?

- A. To drain excess oil**
- B. To serve as an installation location for a piercing-type access valve**
- C. To connect directly to the compressor**
- D. To monitor refrigerant levels**

8. In a refrigeration system, flushing agents should not be introduced into which component?

- A. Condenser**
- B. Evaporator**
- C. Compressor**
- D. TXV valve**

9. True or False: HFC's are highly stable in lower parts of the atmosphere.

- A. True**
- B. False**
- C. Sometimes**
- D. Depends on concentration**

10. Where should the suction line filter drier be located?

- A. Downstream of the Expansion Device**
- B. Just upstream of the Compressor Inlet**
- C. Near the Evaporator Coil**
- D. At the Compressor Outlet**

Answers

SAMPLE

1. D
2. B
3. A
4. A
5. B
6. C
7. B
8. C
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What happens to the temperature of vaporizing refrigerant even if the pressure remains constant?

- A. It increases steadily**
- B. It remains unchanged**
- C. It increases then decreases**
- D. Temperature glide occurs**

The correct choice underscores an important concept in refrigeration systems known as temperature glide, which occurs when the refrigerant evaporates. Even if the pressure within the system is held constant, the temperature of the refrigerant can exhibit variations as it transitions from a liquid to a vapor. Temperature glide is characteristic of azeotropic blends or refrigerants that do not perfectly behave like simple single-component refrigerants. During the phase change, the refrigerant absorbs heat and changes its physical state, and different components of the mixture can vaporize at different temperatures. Therefore, instead of maintaining a single temperature, the refrigerant displays a range of temperatures, or glide, as it moves through this phase change. Understanding this phenomenon is crucial for technicians working with refrigeration systems, as it impacts system efficiency and the performance of the equipment. The temperature may not remain constant even when pressure is stable, emphasizing the complex behaviors of mixed refrigerants in practical applications.

2. Under conditions of ARI 740, what capability must self-contained recovery equipment for small appliances have regarding vacuum evacuation?

- A. To evacuate to 2" Hg vacuum**
- B. To evacuate to 4" Hg vacuum**
- C. To evacuate to 8" Hg vacuum**
- D. To evacuate to 10" Hg vacuum**

Self-contained recovery equipment for small appliances must be capable of evacuating to a 4" Hg vacuum under the conditions specified by ARI 740. This standard ensures that the equipment is effective in removing refrigerants from small appliances, allowing for proper recovery without releasing harmful substances into the environment. Achieving a 4" Hg vacuum is crucial as it enables the thorough removal of moisture and refrigerants, ensuring that the system is adequately prepared for servicing or repair. This capability is essential for compliance with EPA regulations aimed at minimizing environmental impact and improving the efficiency of the recovery processes.

3. True or False: CFCs have a higher ozone depletion potential (ODP) than HCFCs.

- A. True**
- B. False**
- C. Only in closed systems**
- D. Only in open systems**

CFCs (chlorofluorocarbons) indeed have a higher ozone depletion potential (ODP) compared to HCFCs (hydrochlorofluorocarbons). The ozone depletion potential is a measure of a substance's ability to deplete the ozone layer; it indicates how effective a chemical is at causing ozone depletion relative to a reference substance, typically R-11 (trichlorofluoromethane), which has an ODP of 1. CFCs are fully halogenated compounds and have more chlorine and bromine atoms compared to HCFCs, which are partially halogenated and contain hydrogen. The absence of hydrogen in CFCs allows them to be more stable and persist longer in the atmosphere, leading to more significant ozone depletion when they eventually reach the stratosphere and release chlorine atoms that catalyze the breakdown of ozone molecules. In contrast, HCFCs have a lower ODP due to their inclusion of hydrogen, which makes them less stable and more likely to break down in the lower atmosphere before they can cause significant damage to the ozone layer. This lower stability results in a reduced capacity to reach the stratosphere, where ozone depletion occurs. Thus, the statement that

4. Which regulation outlines standards for managing refrigerants?

- A. Clean Air Act**
- B. Resource Conservation and Recovery Act**
- C. Safe Drinking Water Act**
- D. Occupational Safety and Health Act**

The Clean Air Act is the regulation that outlines standards for managing refrigerants. This law is significant because it focuses on the prevention of air pollution and the protection of the ozone layer. One of its key components is the regulation of substances that deplete the ozone, which includes many refrigerants. Under this act, the Environmental Protection Agency (EPA) has implemented rules to reduce the release of these harmful substances into the atmosphere, necessitating proper handling, recovery, and recycling practices for refrigerants. The other acts mentioned, while important in their respective areas, do not specifically focus on the management and regulations of refrigerants. The Resource Conservation and Recovery Act deals mainly with the disposal and management of hazardous waste, the Safe Drinking Water Act is focused on protecting the quality of Americans' drinking water supplies, and the Occupational Safety and Health Act primarily governs workplace safety and health standards. Thus, the Clean Air Act is the definitive regulation regarding refrigerant management.

5. Which piece of equipment is essential for the recovery of refrigerants?

- A. Compressor**
- B. Recovery machine**
- C. Expansion valve**
- D. Filter drier**

The recovery machine is essential for the recovery of refrigerants because it is specifically designed to extract refrigerants from air conditioning and refrigeration systems. Recovery machines operate by using a compressor to draw refrigerant out of the system, collect it in a storage tank, and ensure that the refrigerant is recovered safely and efficiently without releasing it into the atmosphere. This is critical for environmental protection and compliance with regulations, as improper handling of refrigerants can contribute to ozone depletion and global warming. While other equipment, like compressors, expansion valves, and filter driers, play important roles in the operation of HVAC systems, they do not serve the primary purpose of recovering refrigerants. Compressors are used to circulate refrigerant through the system, expansion valves control the flow of refrigerant, and filter driers remove moisture and contaminants from the refrigerant. However, they are not used for the process of recovering refrigerants, making the recovery machine a specific and necessary tool for this task.

6. What is R-134A commonly used as a replacement for?

- A. R-22**
- B. R-404A**
- C. R-12**
- D. R-410A**

R-134A is commonly used as a replacement for R-12 due to its properties and environmental considerations. R-12, a chlorofluorocarbon (CFC), was found to be harmful to the ozone layer, which led to regulatory actions to phase it out under the Montreal Protocol. R-134A, being a hydrofluorocarbon (HFC), does not deplete the ozone layer, making it a suitable alternative for use in refrigeration and air conditioning systems. The use of R-134A has been widely adopted in automotive air conditioning and household refrigerators, contributing to its classification as a key replacement for R-12. In contrast, the other choices represent refrigerants that have different applications or environmental impacts and are not directly considered alternatives to R-12.

7. What is the purpose of the process stub on small appliances?

- A. To drain excess oil**
- B. To serve as an installation location for a piercing-type access valve**
- C. To connect directly to the compressor**
- D. To monitor refrigerant levels**

The purpose of the process stub on small appliances is to serve as an installation location for a piercing-type access valve. This component allows technicians to access the refrigeration system safely and efficiently for the purpose of maintenance, service, or refrigerant charging. The process stub provides a convenient point where the piercing-type valve can be installed, enabling refrigerant to be added or removed without the need to disconnect components or disrupt the entire system. In the context of small appliances, it's critical to have a designated access point to manage refrigerant levels easily, which ensures compliance with environmental regulations and helps maintain system performance. Other options, while they may relate to various functions within a refrigeration system, do not accurately describe the primary function of the process stub. This clarity is essential for technicians to understand their tools and equipment during service tasks.

8. In a refrigeration system, flushing agents should not be introduced into which component?

- A. Condenser**
- B. Evaporator**
- C. Compressor**
- D. TXV valve**

In a refrigeration system, the compressor should not have flushing agents introduced into it. The compressor plays a crucial role in the system, functioning to compress the refrigerant gas and circulate it throughout the entire refrigeration cycle. Introducing flushing agents into the compressor can cause damage because these agents may not be compatible with the lubricant used in the compressor or the materials within the compressor itself. Flushing agents are designed to clean components of the system by removing oils, debris, and contaminants. However, using them in the compressor could lead to lubricity issues, potentially allowing metal-to-metal contact and resulting in catastrophic failure. The residue from flushing agents may also interfere with the compressor's operation and its ability to function effectively. The other components such as the condenser, evaporator, and TXV (Thermostatic Expansion Valve) can generally tolerate flushing agents for cleaning purposes, as they do not have the same critical lubrication requirements or internal components that could be damaged by such agents. Thus, the compressor must be treated with care to ensure its longevity and operational efficiency in the refrigeration cycle.

9. True or False: HFC's are highly stable in lower parts of the atmosphere.

- A. True**
- B. False**
- C. Sometimes**
- D. Depends on concentration**

HFCs, or hydrofluorocarbons, are indeed not highly stable in the lower parts of the atmosphere. They have a relatively long atmospheric lifetime and tend to be stable in the lower atmosphere initially, but they can undergo degradation processes under certain conditions. Over time, some HFCs can be transported to the stratosphere, where they can contribute to greenhouse gas effects and have a warming impact. Therefore, while they may exhibit stability in the lower atmosphere initially, they are primarily known for their potential long-term impact on climate change due to their ability to persist in the atmosphere. This makes the statement false. Understanding the behavior of HFCs in the atmosphere is crucial for making informed decisions regarding their use and regulation, especially in the context of global warming and climate change.

10. Where should the suction line filter drier be located?

- A. Downstream of the Expansion Device**
- B. Just upstream of the Compressor Inlet**
- C. Near the Evaporator Coil**
- D. At the Compressor Outlet**

The suction line filter drier should be located just upstream of the compressor inlet. This placement is critical for ensuring that any contaminants or moisture in the refrigerant are removed before the refrigerant enters the compressor. By filtering the refrigerant at this point, the filter drier helps protect the compressor, which is a vital component in the refrigeration cycle, from potential damage caused by debris or moisture. Additionally, if contaminants were allowed to pass through to the compressor, they could lead to inefficiencies or failure of the compressor, which would result in system downtime and increased repair costs. Placing the filter drier before the compressor provides the best chance for the compressor to operate efficiently and reliably, maintaining the overall health of the system. Other incorrect locations, such as downstream of the expansion device or at the compressor outlet, would not serve the same protective purpose, as moisture and debris would have already impacted the system by that point. Near the evaporator coil is also not ideal as it does not address the compressor's need for protection before it processes the refrigerant. Thus, the positioning of the filter drier is strategically designed to enhance the system's longevity and performance.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://epa608universal.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE