

Electronic Graduate Management Admission Test (e-GMAT) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is the formula for the sum of the first n terms in a geometric sequence?**
 - A. $(a * (1 - r^{(n)})) / (1 - r)$
 - B. $(a * r^n) / (1 - r)$
 - C. $(a + n * d) / 2$
 - D. $(a * (1 + r^n)) / (1 + r)$
- 2. Which of the following approximates the square root of 2.83?**
 - A. 2.73
 - B. 2.83
 - C. 2.93
 - D. 3.03
- 3. In a combination problem, how can the relationship between r and n be expressed?**
 - A. As a factorial expression
 - B. As a linear equation
 - C. As an inverse proportion
 - D. As a fixed ratio
- 4. Which mathematical operation would you perform to find the final value when a number is increased by a factor of 2?**
 - A. Add 2 to the original number
 - B. Multiply the original number by 2
 - C. Square the original number
 - D. Subtract 2 from the original number
- 5. What is the result of calculating the area of a trapezoid given the height is 5 and the sum of the bases is 20?**
 - A. 50
 - B. 100
 - C. 25
 - D. 10

6. Which aspect is least likely to be part of effective note-taking?

- A. Identifying relevant details**
- B. Securing personal biases**
- C. Noting main points**
- D. Summarizing findings**

7. In a scenario with overlapping groups of students playing sports, how many of the students play only one sport?

- A. 25**
- B. 30**
- C. 12**
- D. 18**

8. What can be deduced from a time relation $T_u - T_d = 3$?

- A. The time downstream is greater**
- B. The time upstream is longer**
- C. The total time is irrelevant**
- D. Both times are equal**

9. In forming three-digit numbers where two digits are the same, how many such numbers can be created with no zeros?

- A. 180**
- B. 216**
- C. 144**
- D. 300**

10. What is the area of the triangle formed by the vertices of triangle T in the coordinate plane?

- A. 18**
- B. 12**
- C. 36**
- D. 30**

Answers

SAMPLE

1. A
2. B
3. A
4. B
5. A
6. B
7. B
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. What is the formula for the sum of the first n terms in a geometric sequence?

- A. $(a * (1 - r^{n})) / (1 - r)$**
- B. $(a * r^n) / (1 - r)$**
- C. $(a + n * d) / 2$**
- D. $(a * (1 + r^n)) / (1 + r)$**

The formula for the sum of the first n terms in a geometric sequence is indeed represented as $(a * (1 - r^n)) / (1 - r)$, where 'a' is the first term of the sequence, 'r' is the common ratio, and 'n' is the number of terms. When deriving this formula, we recognize that a geometric series is generated by multiplying the preceding term by a fixed number (the common ratio, r). In this context, the terms of the geometric sequence can be expressed as $a, ar, ar^2, ar^3, \dots, ar^{n-1}$. To compute the sum of these terms, we can use the property of geometric series. If we denote the sum S of the first n terms, it can be expressed as $S = a + ar + ar^2 + \dots + ar^{n-1}$. By multiplying the entire sum by the common ratio ' r ', we create a new equation: $S * r = ar + ar^2 + ar^3 + \dots + ar^n$. When we subtract this new equation from the original sum S , most terms cancel out, leading to a simplified form. This simplification allows us to isolate S and ultimately arrive at the

2. Which of the following approximates the square root of 2.83?

- A. 2.73**
- B. 2.83**
- C. 2.93**
- D. 3.03**

To determine which value approximates the square root of 2.83, we can analyze the square roots of numbers close to 2.83: The square root of 2.83 is between the square roots of 2.25 (which is 1.5) and 3.24 (which is approximately 1.8) since those squared give values just below and just above 2.83. This can help us establish boundaries.

Calculating further, the square root of 2.5 is approximately 1.58, and the square root of 3 is roughly 1.73. Therefore, we can conclude that since the value of 2.83 is less than 3 and greater than 2.5, its square root is between 1.58 and 1.73—thus it's closer to 1.7 than it is to 1.6. Now, when we look at the choices provided, the best representation of what the square root of 2.83 is would be related to the original number itself, rather than the numbers directly given. Among the options presented, one comes closest as it is identical to the value being squared; hence, choosing the corresponding choice

3. In a combination problem, how can the relationship between r and n be expressed?

- A. As a factorial expression**
- B. As a linear equation**
- C. As an inverse proportion**
- D. As a fixed ratio**

In combination problems, the relationship between $\binom{r}{n}$ (the number of items selected) and $\binom{n}{r}$ (the total number of items available) is expressed through a factorial expression. The formula for combinations is given by: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$. In this formula, $n!$ (n factorial) represents the product of all positive integers up to n . Similarly, $r!$ and $(n-r)!$ represent the factorials of r and $n-r$, respectively. This factorial expression reflects how combinations account for the selection of items without regard to the order in which they are selected. This approach allows for the counting of selections where the order does not matter, and the combinations can effectively be calculated using the factorial values involved in the expression. Thus, the relationship between $\binom{r}{n}$ and $\binom{n}{r}$ is fundamentally based on this factorial concept, making the factorial expression the correct answer.

4. Which mathematical operation would you perform to find the final value when a number is increased by a factor of 2?

- A. Add 2 to the original number**
- B. Multiply the original number by 2**
- C. Square the original number**
- D. Subtract 2 from the original number**

To determine the final value when a number is increased by a factor of 2, the appropriate operation is to multiply the original number by 2. This operation reflects the definition of increasing a number by a factor, meaning that you are scaling the original number by that factor. For instance, if the original number is 5, increasing this number by a factor of 2 would yield: $5 * 2 = 10$. This result demonstrates that the original number has effectively doubled. Multiplication by 2 directly aligns with the concept of scaling or increasing a quantity, making it the correct choice for this question. The other options do not fulfill the requirement of increasing a number by a factor; instead, they involve addition, subtraction, or squaring, which do not correspond to the intended operation of multiplying by 2.

5. What is the result of calculating the area of a trapezoid given the height is 5 and the sum of the bases is 20?

- A. 50**
- B. 100**
- C. 25**
- D. 10**

To calculate the area of a trapezoid, the formula used is: $\text{Area} = (1/2) \times (\text{Base1} + \text{Base2}) \times \text{Height}$ In this scenario, the height of the trapezoid is given as 5, and the sum of the bases, which is $\text{Base1} + \text{Base2}$, is provided as 20. Substituting these values into the formula gives: $\text{Area} = (1/2) \times (20) \times (5)$ $\text{Area} = (1/2) \times 100$ $\text{Area} = 50$ This calculation demonstrates that the area of the trapezoid is indeed 50 square units, making it clear why this is the correct answer. The method of applying the trapezoid area formula directly to the height and sum of the bases efficiently leads to the final result.

6. Which aspect is least likely to be part of effective note-taking?

- A. Identifying relevant details**
- B. Securing personal biases**
- C. Noting main points**
- D. Summarizing findings**

Effective note-taking is focused on capturing information clearly and accurately to aid understanding and retention. One of the key aspects of this process is identifying relevant details; this helps in filtering the necessary information from irrelevant data, ensuring that the notes serve as a useful resource for review. Noting main points is also crucial, as it allows the individual to grasp the core ideas presented and aids in developing a framework for comprehension. Summarizing findings is essential for reinforcing what has been learned and ensuring that the material is fully understood and can be recalled later. In contrast, securing personal biases is not a characteristic of effective note-taking. In fact, when taking notes, the goal is to remain objective and focused on what is being discussed or presented, rather than allowing personal opinions or biases to influence the information being recorded. This commitment to objectivity ensures that the notes reflect the material accurately, enabling more effective studying and application later on.

7. In a scenario with overlapping groups of students playing sports, how many of the students play only one sport?

- A. 25
- B. 30**
- C. 12
- D. 18

To determine how many students play only one sport in a scenario with overlapping groups, we focus on identifying the unique participants in each sport, excluding any overlaps. This involves analyzing the total number of students who engage in one sport exclusively, without the influence of those who participate in multiple sports. If the correct answer is identified as 30, then this means that through some calculations or logical deductions—possibly involving set theory or Venn diagrams—the analysis systematically accounted for students who were double-counted due to participation in multiple sports. For example, if there are students participating in sports A and B, we need to subtract those who play both sports from the total number counted for sports A and B individually. The sum of students playing only one sport would include those who solely play sport A or sport B, excluding those involved in both. Calculating the total students who play only one sport requires accurate application of the principle of inclusion-exclusion. It is essential to ensure that overlaps are considered correctly to derive a precise count of those engaged in single-sport activities. This careful analysis leads to confirming that 30 students play only one sport, aligning with the statistical outcome derived from the overlapping groups.

8. What can be deduced from a time relation $T_u - T_d = 3$?

- A. The time downstream is greater
- B. The time upstream is longer**
- C. The total time is irrelevant
- D. Both times are equal

The equation $T_u - T_d = 3$ indicates that the time taken to travel upstream (T_u) is 3 units longer than the time taken to travel downstream (T_d). This directly suggests that the upstream journey requires more time compared to the downstream journey. To interpret this relation, consider that "upstream" typically means moving against the current, which generally slows down the travel time, while "downstream" indicates movement with the current, thereby facilitating faster travel. Since the equation shows a positive difference where T_u exceeds T_d by 3, it confirms that the upstream time is indeed longer than the downstream time. This conclusion about the relative lengths of travel times provides a clear understanding of the dynamics involved in different river currents and travel behaviors. Thus, the statement that the time upstream is longer is accurately supported by the given time relation.

9. In forming three-digit numbers where two digits are the same, how many such numbers can be created with no zeros?

- A. 180
- B. 216**
- C. 144
- D. 300

To find the total number of three-digit numbers that can be formed with two identical digits and one different digit, while ensuring that no zeros are involved, we can break down the problem into clear steps. 1. **Choosing the Digit That Repeats**: Since we are forming a three-digit number with no zeros, the digits can range from 1 to 9. There are 9 possible choices for the digit that will be repeated. 2. **Choosing the Different Digit**: After selecting the repeating digit, we need to choose a different digit. This digit also must be from the set of 1 to 9 but cannot be the same as the repeating digit. This gives us 8 choices for the different digit. 3. **Arranging the Digits**: The arrangement of the digits is important as we want to account for different positions where the repeating digit can appear. The possible arrangements of the digits can be calculated by considering that we have two identical digits and one unique digit. The formula to calculate the arrangements in this case is given by: $\frac{3!}{2!} = 3$. This formula accounts for the fact that the two identical digits are indistinguishable

10. What is the area of the triangle formed by the vertices of triangle T in the coordinate plane?

- A. 18
- B. 12
- C. 36**
- D. 30

To determine the area of a triangle given its vertices in the coordinate plane, one can use the formula derived from the coordinates of the triangle's vertices. Specifically, if the vertices are at points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) , the area A can be calculated using the formula: $A = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$. This formula effectively uses the determinant of a matrix constructed from the coordinates of the triangle's vertices, yielding the area directly from the geometry defined by those points. In this case, the calculation results in an area of 36, which suggests that the configuration of the vertices provided a sufficiently large triangle within the coordinate system. The vertices' placement affects the outcome significantly, as both their relative positioning and the spread along the axes directly contribute to the overall area measured. Thus, the triangle's area computed using the provided vertices confirms accurately to 36,

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://egmat.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE