

Electrical Apprenticeship Year 2 L8-20 Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. How many time constants does it take for the voltage across the capacitor to reach the value of the source voltage?**
 - A. Three**
 - B. Five**
 - C. Seven**
 - D. Ten**
- 2. What is the property of an electrical circuit that opposes any change in current?**
 - A. Resistance**
 - B. Conductance**
 - C. Inductance**
 - D. Capacitance**
- 3. True power in a circuit is measured in which unit?**
 - A. Volts**
 - B. Watts**
 - C. Ohms**
 - D. Amperes**
- 4. The primary purpose of an inductor in a circuit is to?**
 - A. Store energy as electric field**
 - B. Store energy as magnetic field**
 - C. Limit current**
 - D. Rectify voltage**
- 5. What aspect of power quality is crucial for electrical systems' efficiency?**
 - A. Only current measurement**
 - B. Lighting conditions**
 - C. Voltage, current, frequency, and harmonics**
 - D. Grounding issues**

6. What is a dielectric?

- A. A conductor used in electrical circuits**
- B. An insulator that is exposed to an electric field**
- C. A type of semiconductor**
- D. A resistor with variable resistance**

7. What does a current transformer do?

- A. It measures high-frequency signals**
- B. It measures large current flows and converts them to a smaller output**
- C. It acts as a circuit breaker**
- D. It converts voltage into current**

8. What is often a sign of loose connections in an electrical system?

- A. Intermittent dimming of lights**
- B. Steady brightness in lighting fixtures**
- C. Increased power factor**
- D. Consistent voltage output**

9. What is the use of PPE in electrical work?

- A. To enhance visibility**
- B. To ensure personal safety from electrical hazards**
- C. To improve efficiency**
- D. To provide insulation to tools**

10. What term describes the total opposition to the flow of current in an AC circuit?

- A. Resistance**
- B. Inductance**
- C. Impedance**
- D. Reactance**

Answers

SAMPLE

1. B
2. C
3. B
4. B
5. C
6. B
7. B
8. A
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. How many time constants does it take for the voltage across the capacitor to reach the value of the source voltage?

- A. Three**
- B. Five**
- C. Seven**
- D. Ten**

The voltage across a capacitor in an RC (resistor-capacitor) circuit approaches the source voltage asymptotically as time progresses. The concept of time constants is crucial in understanding this behavior. One time constant, which is defined as the time it takes for the voltage to rise to about 63.2% of the source voltage, occurs when the circuit is switched on. After one time constant, the voltage is roughly 63.2% of the maximum value. After two time constants, the voltage reaches approximately 86.5% of the source voltage. By the time three time constants have passed, the voltage across the capacitor approaches about 95% of the source voltage. Continuing this pattern, after five time constants the voltage will have reached about 99.3% of the source voltage. This is generally considered to be sufficiently close to the source voltage for practical purposes, as the voltage is very near to the source voltage at this point. Therefore, after five time constants, the voltage across the capacitor is effectively seen as having reached the supply voltage. Recognizing this behavior is important in the timing and functional aspects of electrical systems involving capacitors. Thus, five time constants is the answer that best captures how long

2. What is the property of an electrical circuit that opposes any change in current?

- A. Resistance**
- B. Conductance**
- C. Inductance**
- D. Capacitance**

Inductance is the property of an electrical circuit that opposes any change in current. This opposition is due to the creation of a magnetic field around a coil when current flows through it. When there is a change in current, such as increasing or decreasing the flow, the magnetic field responds to maintain the initial state, effectively producing a counter electromotive force (back EMF) that resists the change. This property is fundamentally important in AC circuits and in applications involving motors and transformers, where inductance plays a critical role in energy storage and transfer. The effect of inductance becomes especially noticeable in circuits that experience fluctuating currents, causing the inductor to smooth out the change and prevent abrupt alterations in current flow. Resistance, conductance, and capacitance do not provide this specific behavior related to opposing changes in current. While resistance impedes current and conductance measures the ability to allow current to pass, capacitance stores energy in an electric field but does not directly oppose changes in current like inductance does.

3. True power in a circuit is measured in which unit?

- A. Volts
- B. Watts**
- C. Ohms
- D. Amperes

True power in an electrical circuit is measured in watts. This unit quantifies the actual amount of power consumed by a device to perform work, taking into account the power factor in AC circuits. Unlike reactive power, which is also present in AC systems and is measured in volt-amperes reactive (VAR), true power reflects the effective energy consumption over time. In contrast, volts measure electric potential, ohms represent resistance, and amperes quantify current flow. Watts thus provide the most accurate representation of real energy consumed in a circuit, making it essential for evaluating the efficiency and performance of electrical systems.

4. The primary purpose of an inductor in a circuit is to?

- A. Store energy as electric field
- B. Store energy as magnetic field**
- C. Limit current
- D. Rectify voltage

The primary purpose of an inductor in a circuit is to store energy as a magnetic field. When current flows through the coil of the inductor, it generates a magnetic field around it. The energy is stored in this magnetic field and can be released back into the circuit when the current decreases or is interrupted. Inductors are essential components in various applications such as filters, oscillators, and energy storage devices in power supplies. Their ability to oppose changes in current makes them critical in smoothing out electrical signals and in preventing sudden spikes, which could damage components in the circuit. The other options refer to functions that do not accurately describe the primary purpose of inductors. While limiting current is a feature of inductors due to their inductive reactance, it is not their primary function. Storing energy as an electric field is characteristic of capacitors, and rectifying voltage is a function associated with diodes.

5. What aspect of power quality is crucial for electrical systems' efficiency?

- A. Only current measurement**
- B. Lighting conditions**
- C. Voltage, current, frequency, and harmonics**
- D. Grounding issues**

The efficiency of electrical systems is greatly influenced by various power quality parameters, specifically voltage, current, frequency, and harmonics. Each of these elements plays a critical role in ensuring that electrical equipment operates effectively without unnecessary losses or failures. Voltage levels must be stable and within specified limits to prevent equipment from malfunctioning or being damaged. Current measurements are essential in assessing the load and detecting any imbalances, while frequency is crucial for synchronous operation in alternating current (AC) systems. Harmonics, which are generated by non-linear loads, can lead to overheating, equipment damage, and other issues if not properly managed. Understanding and managing these aspects helps in minimizing energy losses, improving reliability, and prolonging equipment life, all of which are vital for operational efficiency in electrical systems. Therefore, the comprehensive consideration of these parameters is essential for maintaining power quality and ensuring optimal performance.

6. What is a dielectric?

- A. A conductor used in electrical circuits**
- B. An insulator that is exposed to an electric field**
- C. A type of semiconductor**
- D. A resistor with variable resistance**

A dielectric is defined as an insulator that is subjected to an electric field. This characteristic allows dielectrics to store electrical energy when a voltage is applied, making them vital components in various electrical and electronic applications, such as capacitors. The presence of the electric field polarizes the dielectric material, which enhances its ability to hold electric charge. In contrast, a conductor is designed to facilitate the flow of electric current, while a semiconductor is a material that has electrical conductivity between that of insulators and conductors, typically used in transistor and diode technologies. Additionally, a resistor with variable resistance, commonly called a rheostat or potentiometer, is aimed at controlling current flow in circuits rather than exhibiting the properties of storing electrical energy under an electric field. Thus, the identifying feature of a dielectric as an insulator interacting with an electric field clarifies why this is the correct answer.

7. What does a current transformer do?

- A. It measures high-frequency signals
- B. It measures large current flows and converts them to a smaller output**
- C. It acts as a circuit breaker
- D. It converts voltage into current

A current transformer is designed specifically to measure large AC current flows by converting them to a smaller, manageable output current that can be safely measured by standard instrumentation. This is accomplished by utilizing the principle of electromagnetic induction, where the primary winding (which is connected to the high current circuit) generates a magnetic field, inducing a proportionally small current in the secondary winding. The output produced by the transformer is typically a much smaller value, allowing for accurate measurements without subjecting sensitive instruments to the risks associated with high current levels. This feature is crucial in electrical systems for monitoring and protection, as it helps in providing real-time current measurements without needing specialized equipment that can handle large currents directly. In contrast, the other choices pertain to functions that are either not related to current transformers or describe different types of devices used in electrical circuits. For instance, measuring high-frequency signals or acting as a circuit breaker involves different mechanisms and applications not applicable to current transformers.

8. What is often a sign of loose connections in an electrical system?

- A. Intermittent dimming of lights**
- B. Steady brightness in lighting fixtures
- C. Increased power factor
- D. Consistent voltage output

Intermittent dimming of lights is a common indicator of loose connections in an electrical system. When connections between wires are not secure, the electrical flow can become erratic, leading to fluctuations in voltage. This results in moments when the lights may dim unexpectedly as the current struggles to pass through the loose connection. In contrast, a steady brightness in lighting fixtures would suggest a stable connection, while increased power factor and consistent voltage output indicate a well-functioning electrical system with strong, secure connections. Therefore, the presence of intermittent dimming strongly points to potential issues with connectivity that need to be addressed.

9. What is the use of PPE in electrical work?

- A. To enhance visibility
- B. To ensure personal safety from electrical hazards**
- C. To improve efficiency
- D. To provide insulation to tools

The use of personal protective equipment (PPE) in electrical work is primarily focused on ensuring the safety of individuals from various electrical hazards. Electrical work inherently involves risks such as electric shock, arc flash, and exposure to live components. PPE is designed to protect workers from these dangers by providing barriers or layers of protection. For example, insulated gloves protect against electric shock, while flame-resistant clothing can safeguard against severe burns from an arc flash incident. Helmets and face shields are crucial for protecting the head and face from falling objects and molten metal generated during electrical installations or repairs. The overarching goal of PPE in this context is to mitigate risks, thereby enabling workers to perform their tasks safely and effectively in potentially hazardous environments.

10. What term describes the total opposition to the flow of current in an AC circuit?

- A. Resistance
- B. Inductance
- C. Impedance**
- D. Reactance

The term that describes the total opposition to the flow of current in an AC circuit is impedance. Impedance encompasses not just resistance, which is the opposition to current flow that dissipates energy as heat, but also includes reactance. Reactance accounts for the opposition due to the circuit's inductive and capacitive components, which can store energy as electric and magnetic fields. When dealing with alternating current (AC), the behavior of the circuit components can be quite different from that in a direct current (DC) circuit due to the phase shifts introduced by both inductance and capacitance. Impedance combines these effects into a single measurement, usually expressed in ohms, allowing engineers and electricians to effectively analyze and design AC circuits. In summary, the comprehensive nature of impedance makes it the correct term for describing the total opposition to current flow in an AC circuit, as it fully integrates both the resistive and reactive components influencing the behavior of electrical systems in various frequencies.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://elecapprenticeshipyr218to20.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE