

Drone Pilot Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What does Situational Awareness refer to in flight operations?**
 - A. The ability to operate the aircraft**
 - B. The accurate perception of factors impacting flight operations**
 - C. The knowledge of weather conditions**
 - D. The understanding of navigational charts**
- 2. What is a fundamental requirement for unmanned aircraft operations according to Federal Aviation Administration standards?**
 - A. Night operations without lighting**
 - B. Operating within congested airspace**
 - C. Conducting operations with visual line of sight**
 - D. Flying over populated areas without restrictions**
- 3. What is the ceiling of Class B airspace?**
 - A. 8,000 feet MSL**
 - B. 10,000 feet MSL**
 - C. 12,000 feet MSL**
 - D. 14,000 feet MSL**
- 4. When adapting crew resource management (CRM) concepts for small UAs, where should CRM be integrated?**
 - A. Only during training sessions**
 - B. All phases of the operation**
 - C. Only during emergency scenarios**
 - D. At the pre-flight stage only**
- 5. What is the approximate height of the cloud base when the surface air temperature is 86 degrees and the dew point is 81?**
 - A. 800 feet**
 - B. 1,000 feet**
 - C. 1,136 feet**
 - D. 1,500 feet**

6. What is typically the cause of a stall in an unmanned aircraft?

- A. Power failure**
- B. Exceeding critical angle of attack**
- C. Excessive load factor**
- D. Inadequate navigation**

7. How is Class G airspace best described?

- A. Restricted operations requiring ATC authorization**
- B. A free zone where UAS area operations are unrestricted without authorization**
- C. An area primarily for instrument flight operations**
- D. Designated for commercial air traffic only**

8. In the risk management process of aeronautical decision making (ADM), what is the most important factor that should be utilized?

- A. Recognizing problems and using sound judgement**
- B. Following standard procedures blindly**
- C. Consulting all team members before every flight**
- D. Prioritizing speed over safety**

9. What must be visible on your drone if you plan to fly at sunrise at 7:32 am when it's currently 7:12 am?

- A. A landing light**
- B. Anti-collision lighting visible from 3 statute miles**
- C. Radar positioning**
- D. Color markings**

10. To whom are remote pilots required to provide their documents such as pilot certification and aircraft registration?

- A. Local authorities**
- B. FAA officials or inspectors**
- C. Other drone pilots**
- D. Insurance agents**

Answers

SAMPLE

- 1. B**
- 2. C**
- 3. B**
- 4. B**
- 5. C**
- 6. B**
- 7. B**
- 8. A**
- 9. B**
- 10. B**

SAMPLE

Explanations

SAMPLE

1. What does Situational Awareness refer to in flight operations?

- A. The ability to operate the aircraft
- B. The accurate perception of factors impacting flight operations**
- C. The knowledge of weather conditions
- D. The understanding of navigational charts

Situational Awareness in flight operations encompasses more than just the ability to operate an aircraft or knowledge of specific factors like weather or navigational charts. It relates to the comprehensive understanding and perception of all elements that may impact flight safety and efficiency. This includes a pilot's awareness of their surroundings, the environment, potential hazards, airspace restrictions, and the behavior of other aircraft. Accurate situational awareness enables a pilot to make informed decisions, anticipate challenges, and respond effectively to unexpected events. For instance, while awareness of weather conditions and navigational charts is important, they are components of a broader perception that situational awareness entails. Thus, the focus on the accurate perception of multiple interrelated factors best captures the essence of what situational awareness means in the context of aviation.

2. What is a fundamental requirement for unmanned aircraft operations according to Federal Aviation Administration standards?

- A. Night operations without lighting
- B. Operating within congested airspace
- C. Conducting operations with visual line of sight**
- D. Flying over populated areas without restrictions

The fundamental requirement for unmanned aircraft operations according to Federal Aviation Administration (FAA) standards is conducting operations with visual line of sight. This means that the pilot must be able to see the drone with their own eyes, either directly or through the use of corrective lenses, during the entire flight. This requirement is essential for maintaining situational awareness and ensuring safety, as it allows the pilot to avoid obstacles, other aircraft, and people while operating the drone. Maintaining visual line of sight is a crucial aspect of responsible drone operation, promoting safe flying practices. It ensures that the operator can react appropriately to any changes or hazards in the environment, which is especially important in dynamic and unpredictable situations that often arise during aerial operations. This standard helps to safeguard both the drone's operation and the safety of people and property on the ground.

3. What is the ceiling of Class B airspace?

- A. 8,000 feet MSL
- B. 10,000 feet MSL**
- C. 12,000 feet MSL
- D. 14,000 feet MSL

The ceiling of Class B airspace is typically at 10,000 feet Mean Sea Level (MSL). Class B airspace surrounds major airports and extends upward from the surface to a specified altitude, which generally reaches up to 10,000 feet. This specific altitude is designed to protect air traffic that includes commercial aviation and enhance flight safety in busy airspace. Class B airspace is structured to ensure that operations are well-organized and that aircraft can safely navigate without interference from other air traffic, which is particularly crucial in high-density areas. Pilots operating in this airspace must have clearance from Air Traffic Control, further underscoring the importance of maintaining safety standards at this ceiling. In contrast, the other options represent altitudes that either exceed or do not reflect the standard ceiling for Class B airspaces surrounding major airports. By understanding that the typical ceiling is at 10,000 feet, pilots can better comprehend how this airspace operates and the regulatory framework that governs it.

4. When adapting crew resource management (CRM) concepts for small UAs, where should CRM be integrated?

- A. Only during training sessions
- B. All phases of the operation**
- C. Only during emergency scenarios
- D. At the pre-flight stage only

Integrating crew resource management (CRM) concepts in all phases of the operation is essential for enhancing safety and efficiency in small unmanned aircraft (UA) flights. CRM is a systematic, proactive approach that focuses on teamwork, communication, decision-making, and situational awareness. When applied throughout every phase—from pre-flight planning to actual flight operations and post-flight debriefing—it ensures that all team members are engaged and aware of their roles and responsibilities, fostering a collaborative environment. For instance, during the pre-flight stage, effective communication and planning can set the foundation for a successful operation. During the flight, situational awareness and coordination among crew members can help in adapting to changing conditions. Post-flight debriefing allows for reflection and improvement, reinforcing CRM principles that can be carried into future missions. By encompassing all operations, CRM becomes a continuous process rather than a fragmented or reactionary one, ultimately leading to a higher level of safety and operational effectiveness for small UAs.

5. What is the approximate height of the cloud base when the surface air temperature is 86 degrees and the dew point is 81?

- A. 800 feet**
- B. 1,000 feet**
- C. 1,136 feet**
- D. 1,500 feet**

To determine the approximate height of the cloud base using the surface temperature and dew point, the formula used is often referred to as the "Lifting Condensation Level" (LCL) calculation. This formula approximates the height at which air becomes saturated and clouds begin to form. The general rule of thumb for estimating the cloud base height in feet is to use the difference between the air temperature and dew point. Specifically, for every degree Fahrenheit of difference between the surface temperature and dew point, the cloud base is approximately 1,100 feet above the surface. In this scenario, the surface air temperature is 86 degrees Fahrenheit, and the dew point is 81 degrees Fahrenheit. The difference between them is 5 degrees ($86 - 81 = 5$). Multiplying this difference by approximately 1,100 feet gives an estimated cloud base height of about 5,500 feet ($5 \times 1,100$). However, to put this into proper context, when assessing the options provided, it seems like there could be a misinterpretation in the given choices relative to typical ranges for common surface temperatures and dew points. Given the typical behavior of the atmosphere under these conditions, choice C, which states 1,136 feet, is

6. What is typically the cause of a stall in an unmanned aircraft?

- A. Power failure**
- B. Exceeding critical angle of attack**
- C. Excessive load factor**
- D. Inadequate navigation**

Stalls in an unmanned aircraft occur when the aircraft exceeds its critical angle of attack. The critical angle of attack is the angle at which the airflow can no longer smoothly cling to the wing's surface, leading to a significant loss of lift. When the angle of attack increases beyond this critical point, the airflow separates from the wing, resulting in a stall. During a stall, the aircraft may lose lift and altitude, and the pilot needs to recognize and recover from this situation promptly. Unlike other issues such as power failure, excessive load factors, or inadequate navigation, which can lead to different types of problems, exceeding the critical angle of attack directly affects the lift-producing capability of the aircraft's wings, making it the main cause of a stall. Understanding the concept of angle of attack and its relationship to lift is essential for safe drone operation, as it helps prevent unintentional stalls during flight maneuvers.

7. How is Class G airspace best described?

- A. Restricted operations requiring ATC authorization**
- B. A free zone where UAS area operations are unrestricted without authorization**
- C. An area primarily for instrument flight operations**
- D. Designated for commercial air traffic only**

Class G airspace is best described as a free zone where unmanned aircraft system (UAS) operations are generally unrestricted without requiring prior authorization. It encompasses airspace that is not controlled by air traffic control (ATC), making it more permissive for pilots, including drone operators. In Class G airspace, the pilot has more freedom to fly without the need for additional communication or permission from ATC, which facilitates operations in more rural or less congested areas. Class G airspace specifically accommodates visual flight rules (VFR) operations and is vital for recreational and some commercial drone activities. It exists at varying altitudes, often extending from the surface up to a specified altitude, where controlled airspace begins. This provides significant operational flexibility for drone pilots, allowing them to carry out their missions without the complexities of the more restrictive airspace classes. Understanding this classification is essential for drone pilots, as it highlights the operational frameworks and environment in which they can operate legally and safely.

8. In the risk management process of aeronautical decision making (ADM), what is the most important factor that should be utilized?

- A. Recognizing problems and using sound judgement**
- B. Following standard procedures blindly**
- C. Consulting all team members before every flight**
- D. Prioritizing speed over safety**

Recognizing problems and using sound judgment is the most critical factor in the risk management process of aeronautical decision making (ADM) because it involves assessing the flying environment, identifying potential hazards, and evaluating the situation critically. This ability to recognize and analyze risks allows pilots to make informed decisions that can mitigate those risks and enhance overall safety during operations. Effective risk management relies heavily on a pilot's situational awareness and the application of their training and experience to discern which factors may pose a threat during a flight. Sound judgment informs the decision-making process, enabling pilots to prioritize safety and adapt to dynamic conditions, rather than relying on routine procedures or pressures that could lead to unsafe practices. The emphasis is on being proactive rather than reactive, which is essential in high-stakes environments like aviation. Other choices do not reflect the fundamental need for independent thinking and situational assessment that is central to ADM. Following procedures without critical assessment could lead to overlooking unique situations and potential hazards, while consulting every team member for every flight may not always be practical. Prioritizing speed over safety directly contradicts the principles of ADM, which prioritize risk assessment and safe decision-making.

9. What must be visible on your drone if you plan to fly at sunrise at 7:32 am when it's currently 7:12 am?

- A. A landing light**
- B. Anti-collision lighting visible from 3 statute miles**
- C. Radar positioning**
- D. Color markings**

If you are planning to fly your drone at sunrise, specific lighting requirements must be met to ensure visibility and safety. The correct answer is that anti-collision lighting must be visible from 3 statute miles. This requirement is critical because it ensures that your drone can be seen by other aircraft and people even in low-light conditions, which are expected during dawn. At sunrise, the ambient light conditions can be challenging for visual visibility, making it vital to have appropriate lighting systems installed on your drone. Anti-collision lights provide a bright signal to indicate the drone's position and help prevent collisions with other aircraft, which is especially important in the early morning when visibility may be diminished. While landing lights can enhance visibility during takeoff and landing, they do not specifically meet the regulatory requirements for visibility in low-light conditions over a distance. Radar positioning and color markings do not address the immediate safety concerns related to visibility that anti-collision lights achieve. In summary, ensuring that anti-collision lighting is functional and visible from a significant distance adheres to safety regulations and contributes to the safe operation of the drone during low-light conditions such as just before sunrise.

10. To whom are remote pilots required to provide their documents such as pilot certification and aircraft registration?

- A. Local authorities**
- B. FAA officials or inspectors**
- C. Other drone pilots**
- D. Insurance agents**

Remote pilots are required to provide their documents, including pilot certification and aircraft registration, specifically to FAA officials or inspectors when requested. This requirement is part of the regulatory framework established by the Federal Aviation Administration, ensuring that pilots comply with aviation safety standards and regulations. FAA officials have the authority to verify that remote pilots are operating within the legal parameters, which includes confirming that they possess the necessary certifications and that their drones are properly registered. Providing documents to FAA officials is essential because non-compliance can result in fines, penalties, or even the suspension of a pilot's ability to operate drones. This regulatory oversight helps maintain safety and accountability in the airspace, ultimately benefiting the broader community by promoting responsible drone use. The information provided by remote pilots ensures that they are adhering to the established laws and regulations governing drone operations, which is crucial for the safe integration of drones into national airspace.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://dronepilot.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE