

DIVE Integrated Chemistry and Physics (ICP) Quarterly Exam 3 Practice (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. What is a polymer?

- A. A small molecule that forms during a chemical reaction**
- B. A large molecule made of repeating structural units**
- C. A type of solvent used in solutions**
- D. A bond formed between two atoms**

2. What force in a lever is described as the weight being moved?

- A. Effort**
- B. Load**
- C. Resistance**
- D. Torque**

3. Which of the following is a characteristic of non-renewable energy sources?

- A. They can be used indefinitely without loss**
- B. They are naturally replenished over a short period**
- C. They are finite and can be depleted**
- D. They have a lower carbon footprint than renewable sources**

4. How is average speed calculated?

- A. Total time divided by total distance**
- B. Total distance divided by total time**
- C. Distance over speed**
- D. Time divided by velocity**

5. Which term describes the force that gravity exerts on an object?

- A. Mass**
- B. Inertia**
- C. Weight**
- D. Pressure**

6. What is the effect of increasing activation energy on a chemical reaction?

- A. It speeds up the reaction**
- B. It slows down the reaction**
- C. It has no effect on the reaction**
- D. It converts products back to reactants**

7. What type of energy is related to the flow of charged particles in a conductor?

- A. Chemical energy**
- B. Electrical energy**
- C. Mechanical energy**
- D. Thermal energy**

8. What happens during a decomposition reaction?

- A. Two elements combine to form a compound**
- B. A compound breaks down into simpler substances**
- C. Substitutions occur between reactants**
- D. Energy is released without a change in matter**

9. What is the function of mitochondria in a cell?

- A. They store genetic information**
- B. They produce ATP through cellular respiration**
- C. They assist in protein synthesis**
- D. They transport materials within the cell**

10. What term describes the size of a quantity or how big it is?

- A. Magnitude**
- B. Velocity**
- C. Force**
- D. Dimension**

Answers

SAMPLE

1. B
2. C
3. C
4. B
5. C
6. B
7. B
8. B
9. B
10. A

SAMPLE

Explanations

SAMPLE

1. What is a polymer?

- A. A small molecule that forms during a chemical reaction
- B. A large molecule made of repeating structural units**
- C. A type of solvent used in solutions
- D. A bond formed between two atoms

A polymer is defined as a large molecule composed of repeating structural units, typically linked together by covalent bonds. These structural units are called monomers, and when they chemically bond in large numbers, they form the vast array of polymers we encounter in nature and synthetic materials. Examples of polymers include natural substances like proteins and cellulose, as well as synthetic materials like plastics. The other options do not accurately describe a polymer. A small molecule that forms during a chemical reaction refers to a different category of compounds that do not have the long, repeating structure characteristic of polymers. A type of solvent is unrelated to the structural definition of a polymer, as solvents facilitate solutions but do not comprise the chain-like structures that define polymers. Lastly, a bond formed between two atoms does not encapsulate the concept of polymers since this pertains to the interactions between atoms rather than the large, complex structures formed from many connected monomers.

2. What force in a lever is described as the weight being moved?

- A. Effort
- B. Load
- C. Resistance**
- D. Torque

In the context of a lever, the correct term for the weight being moved is referred to as the load. The load represents the force that is being lifted or moved by the lever and is one of the critical components that defines how a lever functions. Understanding the lever's mechanics involves recognizing how effort (the force applied to lift the load) and load interact. The effort is the force exerted by the user to achieve movement, while torque relates to the rotational effect produced by this force about the lever's pivot point. In terms of terminology, "resistance" is often used interchangeably with load in some contexts, but in strict definitions, load is the more precise term to describe the weight being moved in a lever scenario. Thus, identifying the weight being moved as the load clarifies how levers work in terms of mechanical advantage and supports a deeper understanding of physics, including discussions about effort and torque in relation to the fulcrum and overall efficiency of the lever system.

3. Which of the following is a characteristic of non-renewable energy sources?

- A. They can be used indefinitely without loss**
- B. They are naturally replenished over a short period**
- C. They are finite and can be depleted**
- D. They have a lower carbon footprint than renewable sources**

Non-renewable energy sources are defined by their finite nature, which means they exist in limited quantities and can be depleted over time. This characteristic is crucial because it highlights the long-term sustainability issues associated with their use. For example, fossil fuels, such as coal, oil, and natural gas, take millions of years to form and cannot be replaced quickly once consumed. As they are extracted and used, the available reserves decrease, leading to concerns about energy availability for future generations. In contrast, the other options reflect characteristics not associated with non-renewable sources. They do not permit indefinite use without loss, are not replenished within a short timeframe, and do not necessarily possess a lower carbon footprint compared to renewable sources, which are designed to be sustainable and have minimal environmental impacts. Understanding this characteristic is fundamental for discussions about energy policy, environmental impact, and the transition toward more sustainable energy practices.

4. How is average speed calculated?

- A. Total time divided by total distance**
- B. Total distance divided by total time**
- C. Distance over speed**
- D. Time divided by velocity**

Average speed is calculated by taking the total distance traveled and dividing it by the total time taken for that travel. This relationship is fundamental in physics as it provides a measure of how fast an object is moving over a specific distance within a specific time frame. To understand why this calculation works, consider that average speed gives a single value that represents the overall rate of motion, regardless of any variations in speed that may occur during the trip. By dividing distance by time, you encapsulate the entire journey into a simple, understandable metric that indicates the rate at which distance is covered. In contexts where average speed is important, such as in transportation or physics problems involving motion, this calculation allows for straightforward comparisons of speed across different scenarios or conditions.

5. Which term describes the force that gravity exerts on an object?

- A. Mass**
- B. Inertia**
- C. Weight**
- D. Pressure**

The term that describes the force that gravity exerts on an object is weight. Weight is defined as the gravitational force acting on an object, which depends on both the mass of the object and the gravitational acceleration at its location. Essentially, it is the downward force that keeps objects grounded on Earth or any other celestial body. Since weight is determined by multiplying the mass of the object by the acceleration due to gravity (approximately 9.81 m/s^2 on Earth), it varies with changes in mass and gravitational strength. Mass, on the other hand, refers to the quantity of matter in an object and is a measure of its inertia, which is the resistance of an object to changes in its state of motion. Inertia itself is not a force, but rather a property of an object dependent on its mass. Pressure and inertia are concepts related to different physical principles and do not directly define the gravitational force exerted on an object.

6. What is the effect of increasing activation energy on a chemical reaction?

- A. It speeds up the reaction**
- B. It slows down the reaction**
- C. It has no effect on the reaction**
- D. It converts products back to reactants**

Increasing the activation energy of a chemical reaction slows down the reaction. Activation energy is the minimum amount of energy required for reactants to undergo a chemical transformation into products. When the activation energy is set higher, fewer molecules have sufficient energy to overcome this barrier when they collide. As a result, the frequency of successful collisions that result in reactions decreases, leading to a slower overall reaction rate. This principle is significant in understanding reaction kinetics, as it directly links temperature, energy, and rate. Lowering the activation energy—through catalysts, for instance—would increase the probability that reactants have enough energy to react, thereby speeding up the reaction. However, when activation energy increases, the opposite effect occurs, leading to a decrease in the reaction rate.

7. What type of energy is related to the flow of charged particles in a conductor?

- A. Chemical energy**
- B. Electrical energy**
- C. Mechanical energy**
- D. Thermal energy**

The correct choice is related to the flow of charged particles, specifically electrons, in a conductor, which defines electrical energy. When a voltage difference exists across a conductor, it creates an electric field that causes charged particles to move, resulting in an electric current. This energy is harnessed for various applications, such as powering devices or performing work in circuits. In contrast, chemical energy relates to the energy stored in the bonds of chemical compounds and is released in a chemical reaction. Mechanical energy pertains to the energy associated with the motion and position of objects. Thermal energy involves the internal energy of particles in a substance, which is related to temperature. Electrical energy stands out because it is the direct result of the movement of charged particles through a conductor, emphasizing its unique characteristics in the realm of energy types.

8. What happens during a decomposition reaction?

- A. Two elements combine to form a compound**
- B. A compound breaks down into simpler substances**
- C. Substitutions occur between reactants**
- D. Energy is released without a change in matter**

During a decomposition reaction, a compound undergoes a breakdown into simpler substances, which can be either elements or simpler compounds. This type of reaction is essential in various chemical processes, including the breakdown of nutrients in biological systems and the analysis of compounds in the laboratory. The general form of a decomposition reaction can be represented as: $\text{AB} \rightarrow \text{A} + \text{B}$, where AB is the compound being broken down into its constituent elements or simpler compounds, A and B . Understanding decomposition reactions is crucial as they are fundamental in both chemical education and practical applications, such as the decomposition of water into hydrogen and oxygen gases through electrolysis. Contrastingly, the other options describe reactions that do not fit the definition of a decomposition reaction. Combining elements to form a compound, substitution reactions, and scenarios where energy is released without a material change represent different types of chemical interactions.

9. What is the function of mitochondria in a cell?

- A. They store genetic information
- B. They produce ATP through cellular respiration**
- C. They assist in protein synthesis
- D. They transport materials within the cell

Mitochondria play a crucial role in cellular metabolism, primarily known for their function in producing adenosine triphosphate (ATP), which is the main energy currency of the cell. This process occurs through cellular respiration, where glucose and oxygen are utilized to generate ATP, carbon dioxide, and water. Mitochondria have their own DNA and ribosomes, which support their role in energy production. They are often referred to as the "powerhouses" of the cell because they convert energy stored in food molecules into a more readily usable form for cellular activities. This energy production is vital for the functioning of all cellular processes, including those necessary for growth, movement, and reproduction. Understanding the role of mitochondria in ATP production is foundational, as energy is essential for all biological processes. This distinguishes them from other cell components, which have different functions such as genetic information storage, protein synthesis, or material transport.

10. What term describes the size of a quantity or how big it is?

- A. Magnitude**
- B. Velocity
- C. Force
- D. Dimension

The term that describes the size of a quantity or how big it is is "magnitude." In scientific contexts, magnitude refers specifically to the numerical value or size of a measurable quantity without regard to its direction or other characteristics. This can be applied to various physical quantities such as length, mass, and energy. For instance, when discussing a vector quantity like force, the magnitude is the length of the vector, indicating how strong the force is irrespective of its direction. In contrast, other terms listed—velocity relates to speed in a directional sense, force involves an interaction that causes an object to accelerate, and dimension refers to the physical size and shape of an object in space—do not specifically focus on the concept of size alone. Thus, magnitude is the most appropriate term when referring to the size of a quantity.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://diveicpquarterly3.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE