

Dialysis Technician Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Shriveling of red blood cells is known as?**
 - A. Crenation**
 - B. Hemolysis**
 - C. Cytolysis**
 - D. Lyse**

- 2. Which test must be performed on new dialyzers before use?**
 - A. Blood type compatibility test**
 - B. TCV (Total Cell Volume)**
 - C. Serum creatinine test**
 - D. Electrolyte panel**

- 3. How often should carbon tanks be checked for chlorine and chloramines?**
 - A. Daily**
 - B. Each shift**
 - C. Every week**
 - D. Every two weeks**

- 4. Which of the following values is considered the normal range for sodium?**
 - A. 125-135 mEq/L**
 - B. 135-146 mEq/L**
 - C. 140-150 mEq/L**
 - D. 145-155 mEq/L**

- 5. What is a primary concern when managing patients on dialysis related to fluid intake?**
 - A. Fluid Overload**
 - B. Dehydration**
 - C. Electrolyte Imbalance**
 - D. Circulatory Shock**

6. Which of the following treatments is typically needed for hypoglycemia?

- A. Insulin Administration**
- B. Sugar or Glucose Dextrose**
- C. IV Fluids**
- D. Dialysis**

7. In dialysis, what is the purpose of using a dialysis membrane?

- A. To filter excess fluid only**
- B. To allow the passage of electrolytes only**
- C. To separate blood from the dialysate**
- D. To maintain temperature control**

8. What might be a consequence of not properly monitoring dialysate composition?

- A. Chronic dehydration**
- B. Increased risk of infection**
- C. Hypervolemia**
- D. Impaired kidney function**

9. What does ETD stand for in the context of dialysis?

- A. Extra Therapeutic Dialysis**
- B. External Treatment Device**
- C. Emergency Treatment Dose**
- D. Germicide in Dialyzer**

10. What immediate action should be taken if a patient shows signs of an air embolism during dialysis?

- A. Turn the patient to the left side**
- B. Increase the blood flow rate**
- C. Administer oxygen**
- D. Begin CPR**

Answers

SAMPLE

1. A
2. B
3. B
4. B
5. A
6. B
7. C
8. C
9. D
10. A

SAMPLE

Explanations

SAMPLE

1. Shriveling of red blood cells is known as?

- A. Crenation**
- B. Hemolysis**
- C. Cytolysis**
- D. Lyse**

Shriving of red blood cells is termed crenation, which occurs when cells lose water due to osmosis, typically when they are exposed to a hypertonic solution. In this situation, the surrounding fluid has a higher concentration of solutes than the interior of the cells, prompting water to move out of the red blood cells. Consequently, the cells shrink and take on a scalloped or notched appearance. Understanding crenation is crucial in the context of dialysis and the management of patients with kidney issues, as it can reflect the osmotic balance that is vital for maintaining proper cellular function. Hemolysis refers to the breakdown of red blood cells, cytolysis describes the bursting of cells due to osmotic pressure in a hypotonic solution, and lysis generally refers to the disintegration of cells but doesn't specifically indicate the shrunken state observed in crenation.

2. Which test must be performed on new dialyzers before use?

- A. Blood type compatibility test**
- B. TCV (Total Cell Volume)**
- C. Serum creatinine test**
- D. Electrolyte panel**

The Total Cell Volume (TCV) test is essential for new dialyzers before use to ensure that they are functioning properly and have the correct volume of blood clearance capability. TCV provides information about the dialyzer's efficiency in removing toxins from the blood, which is critical for effective dialysis treatment. When new dialyzers are introduced, verifying their characteristics through such tests guarantees that they meet the required standards for patient safety and treatment efficacy. Ensuring that the dialyzer is functioning optimally protects against potential complications during the dialysis process, which could arise from using a faulty or improperly functioning device. The other tests, while relevant in different contexts, do not specifically verify the quality and readiness of new dialyzers for immediate use. Blood type compatibility is crucial for transfusions but is not applicable to dialyzer function. Serum creatinine levels and electrolyte panels are important for assessing patient status and monitoring treatment, but they do not relate to the performance of the dialyzer itself. Therefore, the TCV test is uniquely positioned as the necessary evaluation to conduct before using new dialyzers.

3. How often should carbon tanks be checked for chlorine and chloramines?

- A. Daily**
- B. Each shift**
- C. Every week**
- D. Every two weeks**

The frequency with which carbon tanks should be checked for chlorine and chloramines is critical in maintaining safe and effective dialysis treatment. Checking the carbon tanks each shift ensures that any potential contaminants, such as chlorine or chloramines, are monitored closely and addressed promptly. Chlorine and chloramines can quickly become harmful to patients undergoing dialysis, as they can damage red blood cells and interfere with the dialysis process. By implementing this regular checking schedule, healthcare providers can ensure that any issues are identified and mitigated before they pose a risk to patients. This vigilance helps in maintaining the integrity of the dialysis water treatment system, ensuring patient safety and the effectiveness of the treatment. The other frequencies, while they may seem reasonable, do not provide the same level of assurance and responsiveness that checking each shift does. Regular monitoring at shorter intervals is essential given the potential impacts of these substances on patient health.

4. Which of the following values is considered the normal range for sodium?

- A. 125-135 mEq/L**
- B. 135-146 mEq/L**
- C. 140-150 mEq/L**
- D. 145-155 mEq/L**

The normal range for sodium in the blood is typically recognized as 135 to 145 mEq/L. This range indicates the amount of sodium that is present in the extracellular fluid, which plays a critical role in maintaining fluid balance, blood pressure, and proper nerve and muscle function. Choosing this range as the correct answer reflects an understanding of the physiological role of sodium and its significance in the body, including its contributions to homeostasis. Values falling outside of this range can lead to various health issues; for instance, low sodium (hyponatremia) can cause neurological symptoms due to increased brain cell swelling, while high sodium (hypernatremia) can lead to dehydration and complications related to fluid overload. The other ranges provided in the options either extend too low or too high, which do not reflect the accepted normal levels for sodium and can mislead regarding proper diagnosis and treatment in a clinical setting. Recognizing the correct range is essential for a dialysis technician, as it is crucial for monitoring and managing patients' electrolyte levels accurately.

5. What is a primary concern when managing patients on dialysis related to fluid intake?

- A. Fluid Overload**
- B. Dehydration**
- C. Electrolyte Imbalance**
- D. Circulatory Shock**

The primary concern when managing patients on dialysis related to fluid intake is fluid overload. Patients on dialysis often have reduced kidney function, which impairs their ability to excrete excess fluid. When these patients take in too much fluid, it can result in an overload situation, where the body cannot manage the extra volume, leading to symptoms such as hypertension, edema, and potentially heart failure. Fluid overload can also complicate dialysis sessions, as the dialysis machine must work harder to remove the excess fluid during treatment. This condition demands careful monitoring of both fluid intake and total body fluid levels to avoid serious complications that could arise from an accumulation of fluid in the body. Proper counseling and guidelines on fluid restrictions are essential parts of the care for patients on dialysis. Dehydration, while a concern in other contexts, is generally less of an issue for dialysis patients since they can receive fluids through the dialysis process. Electrolyte imbalances can occur in dialysis patients but are more directly related to issues with dialysis solutions and treatment frequency rather than solely to fluid intake. Circulatory shock is an acute medical condition that, while relevant, is more directly tied to severe blood loss or sudden heart failure rather than chronic management issues associated with fluid intake in dialysis patients.

6. Which of the following treatments is typically needed for hypoglycemia?

- A. Insulin Administration**
- B. Sugar or Glucose Dextrose**
- C. IV Fluids**
- D. Dialysis**

Hypoglycemia, characterized by abnormally low blood glucose levels, requires immediate treatment to raise the glucose to a safe level. Sugar or glucose dextrose is the most appropriate treatment because it quickly provides the body with the simple carbohydrates necessary to elevate blood sugar levels. When a person experiences hypoglycemia, rapid intervention is crucial, and oral glucose or glucose gel is commonly administered if the patient is conscious and able to swallow safely. In situations where the individual is unconscious or unable to take anything by mouth, a form of dextrose can be administered intravenously, but this is still fundamentally focused on increasing glucose levels. The treatment's essence is to supply readily absorbable glucose to counteract the hypoglycemic state effectively. The other options provided do not address the immediate need to restore blood glucose levels. Insulin administration is used to lower blood sugar levels in hyperglycemia, not hypoglycemia. IV fluids may be necessary for hydration or other medical conditions, but they don't directly address low blood sugar. Dialysis is a treatment for kidney failure and is not relevant to managing hypoglycemia. Thus, providing sugar or glucose dextrose is the appropriate response to treat hypoglycemia effectively.

7. In dialysis, what is the purpose of using a dialysis membrane?

- A. To filter excess fluid only**
- B. To allow the passage of electrolytes only**
- C. To separate blood from the dialysate**
- D. To maintain temperature control**

The purpose of using a dialysis membrane is to separate blood from the dialysate. This membrane is a semipermeable barrier that allows only certain substances to pass through while preventing the passage of blood cells and large proteins. During the dialysis process, waste products, electrolytes, and excess fluid diffuse from the blood into the dialysis solution (dialysate) through this membrane. This separation is crucial because it enables the removal of toxins and excess substances from the blood while keeping the blood components intact and preventing contamination from the dialysate. Other options do not accurately capture the primary function of the dialysis membrane. It doesn't solely filter excess fluid or focus exclusively on the passage of electrolytes and does not have a role in maintaining temperature control. Instead, its main function is to facilitate the exchange of necessary substances while protecting the integrity of the blood.

8. What might be a consequence of not properly monitoring dialysate composition?

- A. Chronic dehydration**
- B. Increased risk of infection**
- C. Hypervolemia**
- D. Impaired kidney function**

The consequence of not properly monitoring dialysate composition can lead to hypervolemia. Dialysate plays a crucial role in the dialysis process, as it helps remove excess fluids and waste materials from the blood. If the composition of the dialysate is not correctly monitored and adjusted according to the patient's needs, it may not effectively remove the correct amount of electrolytes and fluids, leading to an imbalance. Hypervolemia, or excess fluid volume in the body, can occur if the dialysis process fails to remove sufficient fluid, which is particularly important for patients who may retain fluid due to kidney failure. This can result in various complications, including hypertension, heart failure, and edema. Therefore, maintaining the appropriate composition of dialysate is essential to ensure effective dialysis treatment and prevent fluid overload in patients.

9. What does ETD stand for in the context of dialysis?

- A. Extra Therapeutic Dialysis**
- B. External Treatment Device**
- C. Emergency Treatment Dose**
- D. Germicide in Dialyzer**

In the context of dialysis, ETD refers to "Emergency Treatment Dose." This term is significant as it relates to the administration of a specific dosage of treatment aimed at addressing acute situations that may arise during dialysis sessions. ETDs are crucial in managing complications, ensuring patient safety, and providing immediate care as required. Understanding the role of an emergency treatment dose is essential for dialysis technicians, as it equips them with the knowledge needed to respond effectively to unforeseen medical issues. Recognizing when and how to administer this treatment can significantly impact patient outcomes during a critical situation. By familiarizing themselves with ETD, technicians enhance their proficiency in dealing with emergencies that may occur during dialysis processes.

10. What immediate action should be taken if a patient shows signs of an air embolism during dialysis?

- A. Turn the patient to the left side**
- B. Increase the blood flow rate**
- C. Administer oxygen**
- D. Begin CPR**

When a patient shows signs of an air embolism during dialysis, turning the patient to the left side is crucial because this positioning helps prevent the air embolism from traveling further into the circulatory system. The left lateral position can promote the air bubble to migrate to the right atrium, where it is less likely to interfere with blood flow to vital organs. This maneuver takes advantage of the body's natural anatomy to mitigate the effects of the air embolism, allowing for better management of the situation.

Administering oxygen, while helpful in many clinical emergencies, does not directly address the specific issue of the air embolism's location or its movement within the circulatory system. Increasing the blood flow rate would not be advisable, as it could exacerbate the problem by potentially forcing the air bubble further into the bloodstream. Initiating CPR is appropriate if the patient becomes unresponsive or shows no signs of circulation, but it is not the immediate response to an air embolism unless there are imminent signs of cardiac arrest. Thus, turning the patient to the left side is the most effective first step in managing an air embolism during dialysis.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://dialysistechnician.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE