

DaVita Certified Clinical Hemodialysis Technician (CCHT) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What can occur from a large number of bent or kinked blood lines during hemodialysis?**
 - A. Hypotension
 - B. Hypothermia
 - C. Hemolysis
 - D. Hypervolemia
- 2. What complication is associated with rapid removal of fluid during dialysis?**
 - A. Hypotension
 - B. Hyperkalemia
 - C. Hypophosphatemia
 - D. Cardiac arrhythmias
- 3. What is a critical factor in maintaining water purity for dialysis?**
 - A. Temperature control
 - B. Daily manual testing
 - C. Continuous monitoring of chlorine levels
 - D. Frequent replacement of filters
- 4. Which condition is the leading cause of chronic kidney disease in adults in the U.S.?**
 - A. Diabetes
 - B. Glomerulonephritis
 - C. Hypertension
 - D. Urinary obstruction
- 5. What is the most likely cause for a low venous pressure alarm during hemodialysis treatment?**
 - A. Clot in the venous drip chamber
 - B. Disconnection of the blood line
 - C. Kinking of the blood line
 - D. Venous needle infiltration

6. Why is normal saline used to rinse and prime the extracorporeal circuit prior to treatment?

- A. To remove air**
- B. To remove bacteria**
- C. To remove carbon filings**
- D. To remove residual chlorine**

7. What is the primary function of a dialysis technician?

- A. To perform surgical procedures**
- B. To manage patient dietary needs**
- C. To operate and monitor dialysis machines**
- D. To provide psychological support**

8. What is the part of the bacterial cell wall that can cause fever in hemodialysis patients when released?

- A. Endotoxin**
- B. Nucleus**
- C. Red blood cell**
- D. Transferrin**

9. Infection control protocols for hemodialysis equipment should include which action by the caregiver?

- A. Changing the machine between patients**
- B. Culturing the ports of the machine after each patient**
- C. Using gloves when touching the machine**
- D. Wiping the machine with a bleach solution after an alarm sounds**

10. What is a likely reason for dizziness and nausea experienced by a patient 15 minutes before the end of dialysis?

- A. Hyperphosphatemia**
- B. Hypertension**
- C. Hypophosphatemia**
- D. Hypotension**

Answers

SAMPLE

1. C
2. A
3. C
4. A
5. B
6. A
7. C
8. A
9. C
10. D

SAMPLE

Explanations

SAMPLE

1. What can occur from a large number of bent or kinked blood lines during hemodialysis?

- A. Hypotension**
- B. Hypothermia**
- C. Hemolysis**
- D. Hypervolemia**

A large number of bent or kinked blood lines during hemodialysis can lead to hemolysis. Hemolysis is the breakdown of red blood cells, which can occur when there is increased turbulence and shear stress on the blood cells as they pass through narrowed or obstructed areas in the blood lines. When the blood flow is disrupted in this way, it can cause the red blood cells to rupture, leading to hemolysis. This can result in the release of hemoglobin into the plasma, which can have several adverse effects on the patient, including potential complications related to clotting or organ function, as well as affecting the accuracy of laboratory tests. Other conditions listed, such as hypotension, hypothermia, and hypervolemia, may not be directly related to the presence of kinked or bent lines. While they could occur in the context of other issues during hemodialysis, hemolysis is the primary concern specifically associated with compromised blood flow due to obstructions in the blood lines. Thus, recognizing the importance of maintaining the integrity of blood lines is essential for patient safety during hemodialysis.

2. What complication is associated with rapid removal of fluid during dialysis?

- A. Hypotension**
- B. Hyperkalemia**
- C. Hypophosphatemia**
- D. Cardiac arrhythmias**

Rapid removal of fluid during dialysis can lead to hypotension, which is characterized by a significant drop in blood pressure. This occurs primarily due to the reduction in blood volume as excess fluid is removed from the patient's body. When fluid is pulled off too quickly, the body may not have enough time to compensate for the rapid decrease in plasma volume, leading to symptoms such as dizziness, lightheadedness, and fainting. Hypotension is a common challenge in hemodialysis settings and requires careful management to ensure patient safety and comfort during the treatment. The other options involve different physiological processes. For example, hyperkalemia is an increased level of potassium in the blood and is generally a concern when there is inadequate removal of potassium during dialysis rather than fluid. Hypophosphatemia, a condition of low phosphate levels, typically relates to dietary intake or metabolic issues, not fluid removal rates. Cardiac arrhythmias can occur from various imbalances in electrolytes but are not directly linked to the rapid removal of fluid as a primary cause, making hypotension the primary concern in this context.

3. What is a critical factor in maintaining water purity for dialysis?

- A. Temperature control**
- B. Daily manual testing**
- C. Continuous monitoring of chlorine levels**
- D. Frequent replacement of filters**

Continuous monitoring of chlorine levels is essential for maintaining water purity in dialysis because chlorine can be harmful to patients undergoing treatment. Chlorine is frequently found in municipal water supplies and, if present in dialysis water, it can lead to hemolysis (destruction of red blood cells) and other serious health problems.

Monitoring chlorine levels allows healthcare providers to ensure that the water used in dialysis meets safety standards. Typically, the acceptable level of chlorine in dialysis water is effectively zero. Failure to monitor chlorine continuously might lead to undetected contamination, which can have dire consequences for patients reliant on hemodialysis for their treatment. While temperature control, daily manual testing, and frequent replacement of filters are significant factors in the overall water treatment process, they do not directly address the specific threat posed by chlorine. Therefore, consistent monitoring of chlorine levels is a critical component in ensuring safe, high-quality water for dialysis patients.

4. Which condition is the leading cause of chronic kidney disease in adults in the U.S.?

- A. Diabetes**
- B. Glomerulonephritis**
- C. Hypertension**
- D. Urinary obstruction**

Diabetes is recognized as the leading cause of chronic kidney disease (CKD) in adults in the United States. This is largely due to the effects of prolonged high blood sugar levels, which can damage blood vessels in the kidneys, impairing their ability to filter waste and excess fluids from the blood. Over time, this damage leads to diabetic nephropathy, a specific type of kidney damage caused by diabetes. As the condition progresses, it can lead to end-stage renal disease (ESRD), requiring dialysis or kidney transplantation. Understanding the impact of diabetes on kidney health highlights the importance of management and control of blood sugar levels. Identifying diabetes as a primary cause of CKD emphasizes the need for regular monitoring and early intervention in patients with diabetes to prevent the onset of kidney disease.

5. What is the most likely cause for a low venous pressure alarm during hemodialysis treatment?

- A. Clot in the venous drip chamber**
- B. Disconnection of the blood line**
- C. Kinking of the blood line**
- D. Venous needle infiltration**

A low venous pressure alarm during hemodialysis treatment typically indicates that there is a problem with the return of blood from the patient back to the machine.

Disconnection of the blood line is a significant event that can lead to such an alarm. When the blood line becomes disconnected, the return flow of blood is interrupted, causing the pressure in the venous line to drop. This lack of return flow can trigger the alarm to alert the healthcare provider that there is an issue that needs immediate attention. While other factors like kinking of the blood line and clotting can also influence venous pressure, the direct and immediate nature of a disconnection leads to a clear and pronounced low pressure reading. In addition, venous needle infiltration, although a potential concern, typically presents differently in terms of alarm triggers and requires a different response than a disconnection.

6. Why is normal saline used to rinse and prime the extracorporeal circuit prior to treatment?

- A. To remove air**
- B. To remove bacteria**
- C. To remove carbon filings**
- D. To remove residual chlorine**

Normal saline is utilized to rinse and prime the extracorporeal circuit primarily to remove air. When setting up the dialysis machine and circuit, any trapped air can lead to complications, such as air embolism, which poses significant risks to patient safety. Priming the circuit with normal saline helps to displace air bubbles, ensuring that the circuit is filled with fluid, thus preventing any air from entering the patient's bloodstream during dialysis. While other concerns like bacteria, carbon filings, or residual chlorine are important in the context of overall dialysis safety and circuit maintenance, they are not the primary reason for using normal saline in this specific procedure. Normal saline serves the crucial role of facilitating a smooth and safe connection between the dialysis machine and the patient by eliminating air from the circuit. This practice supports the overall efficacy of the treatment while protecting the patient from potential harm.

7. What is the primary function of a dialysis technician?

- A. To perform surgical procedures**
- B. To manage patient dietary needs**
- C. To operate and monitor dialysis machines**
- D. To provide psychological support**

The primary function of a dialysis technician is to operate and monitor dialysis machines. This role is critical in ensuring that patients undergoing hemodialysis receive safe and effective treatment. Dialysis technicians are responsible for setting up the equipment, monitoring the treatment process, and making adjustments as necessary to achieve optimal patient outcomes. Their training includes understanding the mechanics of the dialysis process, recognizing complications, and responding promptly to any issues that may arise during treatment. While managing patient dietary needs and providing psychological support are important aspects of overall patient care, they fall outside the primary responsibilities of a dialysis technician. Similarly, performing surgical procedures is a function reserved for trained medical professionals, such as surgeons or nephrologists, and is not within the scope of a technician's duties. Thus, the role of a dialysis technician centers specifically on the technical aspects of operating dialysis equipment and monitoring patient safety throughout the dialysis treatment process.

8. What is the part of the bacterial cell wall that can cause fever in hemodialysis patients when released?

- A. Endotoxin**
- B. Nucleus**
- C. Red blood cell**
- D. Transferrin**

Endotoxins are components of the outer membrane of gram-negative bacteria. When these bacteria die or are destroyed—such as during the clearance of bacterial infections or in the case of bacterial contamination—they can release endotoxins into the bloodstream. This release can lead to a range of systemic responses, including fever, due to the action of pyrogens, which are substances that induce fever. In hemodialysis patients, who may have compromised immune systems or may be exposed to contaminated equipment, monitoring for signs of infection and the effects of endotoxins is crucial, as they can significantly impact patient health and treatment efficacy. The other options presented do not pertain to the causes of fever associated with bacterial components. The nucleus refers to the cell's control center, while red blood cells are responsible for transporting oxygen and do not elicit a fever response. Transferrin is a protein involved in iron transport in the body and has no direct connection to fever caused by bacterial infections. This reinforces the understanding of endotoxins as the primary reason for inducing fever in hemodialysis patients.

9. Infection control protocols for hemodialysis equipment should include which action by the caregiver?

- A. Changing the machine between patients**
- B. Culturing the ports of the machine after each patient**
- C. Using gloves when touching the machine**
- D. Wiping the machine with a bleach solution after an alarm sounds**

Using gloves when touching the hemodialysis machine is an essential infection control protocol because it serves as a barrier between the caregiver's hands and the equipment, minimizing the risk of transmitting bacteria and other pathogens. This practice is vital in maintaining a sterile environment, especially since hemodialysis patients often have compromised immune systems and are more susceptible to infections. By wearing gloves, caregivers help prevent contamination of the machine's surfaces, which could occur from skin flora or other environmental sources. This practice is part of standard precautions in healthcare settings to protect both patients and healthcare workers. Proper glove usage also aligns with the principles of personal protective equipment (PPE) in preventing the spread of infections. While other actions, such as changing the machine between patients and disinfecting equipment, are important components of infection control, wearing gloves is a direct and immediate action that caregivers can take in their daily interactions with hemodialysis machines.

10. What is a likely reason for dizziness and nausea experienced by a patient 15 minutes before the end of dialysis?

- A. Hyperphosphatemia**
- B. Hypertension**
- C. Hypophosphatemia**
- D. Hypotension**

Dizziness and nausea experienced by a patient towards the end of a dialysis session can be indicative of hypotension. During dialysis, blood is filtered, and significant fluid removal can lead to a drop in blood pressure, causing patient discomfort. The rapid removal of excess fluid, along with possible vascular changes during treatment, can result in reduced blood volume and impaired perfusion, leading to symptoms like dizziness and nausea. Recognizing these symptoms as signs of hypotension is crucial for clinicians to ensure patient safety and appropriate intervention. Monitoring blood pressure regularly during dialysis can help identify these fluctuations before they cause severe discomfort or complications. Addressing hypotension promptly can help alleviate symptoms and improve the overall dialysis experience for the patient.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://davitaccht.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE