

Dassault Falcon 2000LXS Oral Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is the location of the emergency exit in the aircraft?**
 - A. On the left side by the cockpit**
 - B. In the rear of the cabin**
 - C. On the right side at the seventh aft window**
 - D. Above the wing on the left side**

- 2. What are the automatic mode laws of operation?**
 - A. Normal Law and Emergency Law**
 - B. Normal Law and Flight Level Law**
 - C. Normal Law and Manual Law**
 - D. Altitude Law and Flight Level Law**

- 3. What does CODDE 3 (QRH 2) focus on?**
 - A. Abbreviated normal procedures**
 - B. Expanded emergency procedures**
 - C. Abbreviated abnormal and emergency procedures**
 - D. General maintenance guidelines**

- 4. What is the function of the Main Artificial Feel Unit?**
 - A. To dampen pilot inputs**
 - B. To provide an artificial load feel proportional to control inputs**
 - C. To enhance aerodynamic feedback**
 - D. To adjust control stick sensitivity**

- 5. What kind of maintenance programs are recommended for the Falcon 2000LXS?**
 - A. Only routine daily check-ups**
 - B. Scheduled maintenance aligned with OEM guidelines and FAA regulations**
 - C. Repairs conducted as needed without a specific schedule**
 - D. Weekly engine checks regardless of usage**

- 6. What is the relationship of maximum zero fuel weight compared to maximum ramp weight?**
- A. Maximum zero fuel weight is higher**
 - B. They are the same**
 - C. Maximum zero fuel weight is lower**
 - D. Maximum zero fuel weight is equal to maximum takeoff weight**
- 7. What is the primary purpose of the hydraulic system in a landing gear operation?**
- A. To power the landing gear lights**
 - B. To secure the landing gear during flight**
 - C. To provide hydraulic pressure for gear movement**
 - D. To maintain cabin pressure**
- 8. Which maintenance requirement is emphasized during pre-flight checks for the Falcon 2000LXS?**
- A. Ensuring proper fuel levels and checking hydraulic fluid**
 - B. Inspecting the exterior for signs of wear**
 - C. Testing the passenger emergency oxygen system**
 - D. Calibrating avionics and navigational instruments**
- 9. Which document outlines limitations for inoperative equipment?**
- A. CODDE 2**
 - B. MMEL**
 - C. Fault Guide**
 - D. CODDE 1**
- 10. What is the stall speed (SF2) for the Dassault Falcon 2000LXS?**
- A. 200**
 - B. 190**
 - C. 180**
 - D. 198**

Answers

SAMPLE

1. C
2. B
3. C
4. B
5. B
6. C
7. C
8. A
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What is the location of the emergency exit in the aircraft?

- A. On the left side by the cockpit
- B. In the rear of the cabin
- C. On the right side at the seventh aft window**
- D. Above the wing on the left side

The emergency exit in the Dassault Falcon 2000LXS is located on the right side at the seventh aft window. This positioning allows for safe and efficient egress in an emergency situation, ensuring that passengers can exit the aircraft quickly and effectively. The choice underscores the aircraft's design, which prioritizes passenger safety while also balancing the overall weight and structural integrity. The other options provided do not represent the correct location of the emergency exit. The left side by the cockpit is typically reserved for pilot access and control, while the rear of the cabin does not have a dedicated emergency exit positioned there. Additionally, the option regarding an exit above the wing on the left side does not match the actual configuration of the aircraft, which is designed to facilitate a clear and designated escape route for passengers during an emergency.

2. What are the automatic mode laws of operation?

- A. Normal Law and Emergency Law
- B. Normal Law and Flight Level Law**
- C. Normal Law and Manual Law
- D. Altitude Law and Flight Level Law

The correct answer is that the automatic mode laws of operation in the Dassault Falcon 2000LXS include Normal Law and Flight Level Law. Normal Law is the primary mode of operation during flight, providing the aircraft with various protections and automated responses to pilot inputs. This law is designed to ensure stability and control, enhancing both safety and efficiency during operation. Flight Level Law, while sometimes seen in conjunction with Normal Law, specifically handles the performance and control aspects of an aircraft operating at a defined cruise altitude. It integrates altitude control features that optimize fuel consumption and performance parameters. The other options do not accurately reflect the operational modes of the aircraft. Emergency Law pertains to specific conditions where the aircraft defaults to a minimal control state, and Manual Law would indicate a scenario where the aircraft is operated without any automated protection, which is typically not considered an automatic operation mode. Altitude Law has similarities to Flight Level Law but is not a recognized term within the operational laws of the Falcon 2000LXS. Thus, the correct pairing of Normal Law with Flight Level Law best describes the automatic operation modes utilized in this aircraft.

3. What does CODDE 3 (QRH 2) focus on?

- A. Abbreviated normal procedures
- B. Expanded emergency procedures
- C. Abbreviated abnormal and emergency procedures**
- D. General maintenance guidelines

CODDE 3, as referenced in the Quick Reference Handbook (QRH), specifically targets abbreviated abnormal and emergency procedures. This is important for pilots as it allows them to quickly address unusual situations or system failures encountered during flight. The procedures included under CODDE 3 are streamlined and aimed at providing essential actions that can be taken promptly to ensure safety and to minimize any risk associated with abnormal operations or emergencies. The focus on abbreviated procedures is crucial because, during high-stress situations like an emergency, the ability to quickly reference and implement key actions can be the difference between a smooth resolution and a potential crisis. Having these actions condensed makes it easier for pilots to react quickly without the added burden of sifting through extensive documentation. In contrast, other choices such as abbreviated normal procedures or expanded emergency procedures do not accurately reflect the specific nature of CODDE 3. Normal procedures relate to routine operational tasks rather than abnormal or emergency situations, and expanded emergency procedures would imply a more detailed approach than what is provided in CODDE 3. General maintenance guidelines are unrelated to flight operations and are focused on aircraft upkeep rather than immediate in-flight responses.

4. What is the function of the Main Artificial Feel Unit?

- A. To dampen pilot inputs
- B. To provide an artificial load feel proportional to control inputs**
- C. To enhance aerodynamic feedback
- D. To adjust control stick sensitivity

The function of the Main Artificial Feel Unit is to provide an artificial load feel that is proportional to control inputs. This unit is specifically designed to simulate the feedback that a pilot would typically experience in a conventional aircraft with direct control surfaces. In fly-by-wire systems like those in the Dassault Falcon 2000LXS, the control inputs are sent electronically rather than through mechanical linkages. The Main Artificial Feel Unit replicates the tactile sensation of resistance that pilots rely on for effective control, helping them gauge the aircraft's response to their inputs without directly feeling the aerodynamic forces on the control surfaces. This feedback is crucial for maintaining pilot awareness and situational control during flight, particularly in high-speed or high-load situations. The "feel" it provides allows for more intuitive handling of the aircraft, which can otherwise feel disconnected due to the lack of immediate physical response in such advanced systems.

5. What kind of maintenance programs are recommended for the Falcon 2000LXS?

- A. Only routine daily check-ups
- B. Scheduled maintenance aligned with OEM guidelines and FAA regulations**
- C. Repairs conducted as needed without a specific schedule
- D. Weekly engine checks regardless of usage

Scheduled maintenance aligned with OEM guidelines and FAA regulations is crucial for the Falcon 2000LXS to ensure its safety, reliability, and airworthiness. Following these established maintenance programs allows for systematic checks and balances that help in identifying potential issues before they become serious problems. This approach not only complies with industry standards but also helps maintain the aircraft's performance and extends its overall lifespan. Maintenance activities typically include inspections, overhauls, and component replacements that are prescribed at specific intervals or based on usage, thereby ensuring that all critical systems are well-monitored and maintained. Routine daily check-ups, while important for immediate operational safety, do not encompass the comprehensive assessments and repairs that scheduled maintenance provides, making them insufficient as a sole maintenance strategy. Conducting repairs as needed without a predetermined schedule lacks structure and can lead to oversight of critical maintenance tasks, thereby jeopardizing safety. Weekly engine checks without regard to how much the aircraft is used may not accurately reflect the actual condition of the engines, as they may not be necessary based on actual operational cycles. Thus, the best practice for maintaining the Falcon 2000LXS is to adhere to scheduled maintenance per OEM and FAA guidelines.

6. What is the relationship of maximum zero fuel weight compared to maximum ramp weight?

- A. Maximum zero fuel weight is higher
- B. They are the same
- C. Maximum zero fuel weight is lower**
- D. Maximum zero fuel weight is equal to maximum takeoff weight

Maximum zero fuel weight (MZFW) is a critical limitation in aviation that refers to the maximum weight of the aircraft without any usable fuel. This weight includes the aircraft's structure, passengers, baggage, cargo, and any other items loaded onto the plane. On the other hand, maximum ramp weight (MRW) encompasses the weight of the aircraft, including fuel, passengers, cargo, and other items, at the ramp before takeoff. MZFW is inherently lower than MRW because the latter includes the weight of fuel, which is necessary for flight. Thus, the correct answer highlights that maximum zero fuel weight is lower than maximum ramp weight, emphasizing the importance of adhering to these weight limitations to maintain aircraft safety and performance during various phases of flight. The other options do not accurately reflect the relationship between the weights.

7. What is the primary purpose of the hydraulic system in a landing gear operation?

- A. To power the landing gear lights**
- B. To secure the landing gear during flight**
- C. To provide hydraulic pressure for gear movement**
- D. To maintain cabin pressure**

The primary purpose of the hydraulic system in a landing gear operation is to provide hydraulic pressure for gear movement. This is essential for the correct extension and retraction of the landing gear during takeoff and landing phases of flight. The hydraulic system generates the necessary force to operate the landing gear mechanisms, allowing them to move smoothly and efficiently in and out of their respective bays. While other systems in the aircraft may also depend on hydraulic power, such as flight control surfaces and brakes, the direct correlation of hydraulic pressure to the actuation of the landing gear makes this function critical. When the pilot commands the landing gear to extend or retract, the hydraulic system engages to perform this task, distinguishing it from other functions such as securing the gear or managing cabin pressure, which do not directly involve hydraulic movement.

8. Which maintenance requirement is emphasized during pre-flight checks for the Falcon 2000LXS?

- A. Ensuring proper fuel levels and checking hydraulic fluid**
- B. Inspecting the exterior for signs of wear**
- C. Testing the passenger emergency oxygen system**
- D. Calibrating avionics and navigational instruments**

The emphasis on ensuring proper fuel levels and checking hydraulic fluid during pre-flight checks is crucial for the Falcon 2000LXS due to the fundamental role these systems play in the aircraft's operation and safety. Proper fuel levels are essential to ensure that the aircraft has enough thrust to meet the required performance during takeoff, flight, and landing. Inspecting hydraulic fluid is equally important as hydraulic systems control various critical functions such as landing gear operation, flight control surfaces, and brakes. Insufficient fluid can lead to system failures, potentially jeopardizing the flight. In comparison, while inspecting the exterior for signs of wear is important for overall aircraft safety and aesthetics, it typically addresses longer-term maintenance rather than immediate operational readiness. Testing the passenger emergency oxygen system ensures passenger safety but is usually part of routine checks rather than a focused pre-flight requirement. Calibrating avionics and navigational instruments is essential, but this is generally done during scheduled maintenance rather than prior to each flight. Thus, the focus on fuel and hydraulic checks is a key safety and operational requirement for pre-flight preparation.

9. Which document outlines limitations for inoperative equipment?

- A. CODDE 2**
- B. MMEL**
- C. Fault Guide**
- D. CODDE 1**

The document that outlines limitations for inoperative equipment is the Minimum Equipment List (MMEL). This list serves as a standardized reference that identifies the equipment that may be inoperative for safe operation of aircraft. It contains specific conditions under which the flight can continue without certain equipment functioning, effectively providing a framework to ensure safety while allowing for operational flexibility. The MMEL is crucial for pilots and maintenance crews, as it helps them understand which systems can be inoperative and under what conditions the aircraft can still be legally flown. Each aircraft type has its unique MMEL based on its design and operational requirements, and this list is developed in coordination with aviation authorities. The other documents mentioned serve different purposes within the context of aviation operations and maintenance. The Fault Guide is typically focused on troubleshooting issues, while CODDE (which stands for Configuration Deviation Document) generally addresses configuration variations and how they relate to aircraft operation but is not specifically designed for inoperative equipment limitations in the same way the MMEL is.

10. What is the stall speed (SF2) for the Dassault Falcon 2000LXS?

- A. 200**
- B. 190**
- C. 180**
- D. 198**

The stall speed (SF2) for the Dassault Falcon 2000LXS is indeed 190 knots. This speed is critical for pilots to understand as it represents the minimum speed at which the aircraft can maintain controlled flight. When the aircraft drops below this speed, it risks stalling, which is a loss of lift due to the airflow over the wings becoming turbulent and separated. Understanding stall speeds is vital for safe flight operations, especially during takeoff, landing, and in situations where the aircraft might be maneuvering at lower speeds. The stall speed varies with the weight of the aircraft and configuration (flaps position, gear, etc.), but for the Falcon 2000LXS, the standard stall speed in the clean configuration is established at 190 knots, making this piece of information crucial for pilots to ensure they operate within safe flying parameters.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://dassaultfalcon2000lxsoral.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE