

Computed Tomography Technologist Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. What happens to the anatomy covered lengthwise when the pitch in a CT scan is decreased?

- A. Anatomy covered lengthwise increases and dose decreases**
- B. Anatomy covered lengthwise decreases and dose increases**
- C. There is no effect on anatomy coverage**
- D. Both anatomy coverage and dose remain constant**

2. What types of film are used in CT imaging?

- A. Digital-only film**
- B. Laser-printed film or single-emulsion film**
- C. Conventional black-and-white film**
- D. Dual-emulsion film**

3. In terms of dose, what are "tails"?

- A. Areas of increased radiation exposure**
- B. Error in dose calculation**
- C. Areas of scatter that fall into adjacent slices**
- D. Regions of decreased tissue response**

4. As pixel size decreases, what is expected to happen to contrast resolution?

- A. It improves**
- B. It decreases**
- C. It remains the same**
- D. It becomes irrelevant**

5. What is a noted benefit of using xenon gas detectors in comparison with traditional solid-state detectors?

- A. Less sensitive to temperature and humidity**
- B. Higher detection efficiency**
- C. Compact design**
- D. Lower operational costs**

6. What term is sometimes used to refer to the values in CT images?

- A. Contrast**
- B. Brightness**
- C. Density**
- D. Opacity**

7. When assigning pixel values in CT imaging, what does the term "density" relate to?

- A. Color intensity**
- B. Atomic number**
- C. Radiation absorption**
- D. Image resolution**

8. What does overbeaming refer to in computed tomography?

- A. Enhancing image quality by reducing the collimator opening**
- B. Opening the collimators more to allow preumbra to fall outside the active detectors**
- C. Increasing patient dose without affecting image quality**
- D. Lowering the intensity at the active detectors**

9. What advantage did overscan provide in 4th generation CT units?

- A. Increased image resolution**
- B. Reduced motion artifacts**
- C. Faster scan times**
- D. Better contrast resolution**

10. What is a key characteristic of the equilibrium phase in CT?

- A. It starts right after the scanning process**
- B. It follows the non-equilibrium phase**
- C. It alters the dose measurement**
- D. It ends before contrast injection**

Answers

SAMPLE

1. B
2. B
3. C
4. B
5. A
6. C
7. C
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What happens to the anatomy covered lengthwise when the pitch in a CT scan is decreased?

- A. Anatomy covered lengthwise increases and dose decreases**
- B. Anatomy covered lengthwise decreases and dose increases**
- C. There is no effect on anatomy coverage**
- D. Both anatomy coverage and dose remain constant**

When the pitch in a CT scan is decreased, the anatomy covered lengthwise decreases and the dose increases. Pitch refers to the ratio of the distance the table moves in one rotation of the x-ray tube to the width of the x-ray beam (collimation). A lower pitch means that the table moves less distance for each rotation, resulting in more overlap between the slices of the anatomy being imaged. This overlap means that less anatomical length is covered in a given period because the scanner takes more time to cover the same distance. As the pitch decreases and the table moves closer to the stationary position for each rotation, more radiation is used per unit of distance covered to achieve the overlapping slices, which results in an increase in the dose the patient receives. Hence, decreasing the pitch effectively increases dose while simultaneously decreasing the amount of anatomical coverage achieved lengthwise.

2. What types of film are used in CT imaging?

- A. Digital-only film**
- B. Laser-printed film or single-emulsion film**
- C. Conventional black-and-white film**
- D. Dual-emulsion film**

In CT imaging, the use of laser-printed film or single-emulsion film is most relevant because these types of films are designed specifically to meet the requirements for high-quality image production in computed tomography. Laser-printed film offers superior resolution and tonal range, which are essential for accurately representing the detailed information obtained from CT scans. Single-emulsion film minimizes issues like halation, allows for better image clarity, and is compatible with digital imaging systems, making it ideal for the precise demands of CT imaging and the processing techniques associated with it. Other films mentioned, such as conventional black-and-white film and dual-emulsion film, do not meet the specific imaging needs of CT technology as effectively. Conventional film lacks the resolution and sensitivity required for the detailed cross-sectional images produced in CT scans, while dual-emulsion film is more suited for other imaging modalities, such as radiography, rather than the specialized requirements of CT imaging. Laser-printed and single-emulsion films are the standards that facilitate optimal image quality in CT practices.

3. In terms of dose, what are "tails"?

- A. Areas of increased radiation exposure
- B. Error in dose calculation
- C. Areas of scatter that fall into adjacent slices**
- D. Regions of decreased tissue response

The term "tails" in the context of computed tomography refers to areas of scatter that fall into adjacent slices. This phenomenon occurs because, during the imaging process, some of the radiation can scatter from the original path due to interactions with matter, such as tissues or the surrounding structures within the body. This scattered radiation can then contribute to the dose received by adjacent slices, resulting in what are referred to as "tails." This effect is particularly pertinent in CT imaging since it can influence the accuracy of dose estimates and the quality of the images produced. Understanding this concept is essential for CT technologists, as it helps them optimize imaging protocols to minimize unnecessary exposure while maintaining diagnostic quality. In contrast, areas of increased radiation exposure, errors in dose calculations, or regions of decreased tissue response do not accurately capture the essence of what "tails" signify in the context of CT dose distribution.

4. As pixel size decreases, what is expected to happen to contrast resolution?

- A. It improves
- B. It decreases**
- C. It remains the same
- D. It becomes irrelevant

As pixel size decreases, contrast resolution is expected to improve. Smaller pixel sizes allow for higher image resolution and greater detail because they can capture finer variations in tissue density. This increased detail enhances the system's ability to differentiate between subtle differences in contrast, leading to a more precise representation of anatomical structures. In imaging, contrast resolution refers to the ability to distinguish between different tissues that have similar densities. With smaller pixels, the technology can sample the image more finely, enabling better differentiation between different types of tissues. Consequently, as pixel size decreases, the system's capacity to detect variations in contrast increases, leading to an overall improvement in the quality of the images produced. The idea that contrast resolution decreases is based on misconceptions regarding pixel size and image quality. In fact, with modern imaging technologies, advancements often enable better contrast resolution with smaller pixel dimensions.

5. What is a noted benefit of using xenon gas detectors in comparison with traditional solid-state detectors?

- A. Less sensitive to temperature and humidity**
- B. Higher detection efficiency**
- C. Compact design**
- D. Lower operational costs**

Xenon gas detectors are recognized for their enhanced performance in varying environmental conditions, particularly their resilience to fluctuations in temperature and humidity. This is significant because traditional solid-state detectors may experience reduced sensitivity or performance variations under different ambient conditions. The use of xenon gas allows these detectors to maintain consistent operational reliability, ensuring that they can accurately detect signals without being influenced by external factors like temperature changes or humidity levels. When comparing this advantage to the other options, detection efficiency, compact design, and operational costs are also important factors to consider. However, the main distinguishing benefit of xenon gas detectors lies in their ability to function effectively in diverse environments, making them a preferred choice where environmental stability cannot be guaranteed.

6. What term is sometimes used to refer to the values in CT images?

- A. Contrast**
- B. Brightness**
- C. Density**
- D. Opacity**

The term "density" is often used to refer to the values in CT images because it describes the amount of X-ray attenuation by different tissues in the body. In CT imaging, various tissues absorb X-rays at different rates, and this differential absorption creates the gray scale in the images. The values representing the degree of attenuation are referred to as Hounsfield Units (HU), which correlate closely with the concept of density. This concept is crucial because understanding how density varies can help in identifying different tissues and potential abnormalities within the scanned area. High-density areas may indicate bone or calcifications, whereas low-density areas may suggest fluid-filled structures or air. Thus, the use of "density" is integral in interpreting CT images effectively, making it the most appropriate term in this context. The other terms, while related to image characteristics in various ways, do not specifically encapsulate the core principle of how the values in CT images are defined and utilized in diagnostics. For instance, contrast refers to the difference in intensity between the various elements in an image, brightness describes the perception of lightness in an image but not the underlying physical properties, and opacity often describes the visualization quality of materials rather than the quantitative assessment associated with density.

7. When assigning pixel values in CT imaging, what does the term "density" relate to?

- A. Color intensity**
- B. Atomic number**
- C. Radiation absorption**
- D. Image resolution**

The term "density" in CT imaging specifically relates to radiation absorption. In this context, density refers to how much radiation is absorbed by different tissues or materials within the body. When x-rays pass through the body during a CT scan, various tissues absorb radiation to different extents depending on their composition and density. Tissues that are denser, like bone, will absorb more radiation and appear lighter (or white) on the CT image. Conversely, less dense tissues, such as lungs filled with air, will absorb less radiation and appear darker (or black). This variation in the amount of radiation absorbed is crucial for creating contrast in the images, allowing for the differentiation of various structures within the body. Understanding the relationship between density and radiation absorption is essential for interpreting CT images accurately, as it directly impacts how different tissues and abnormalities are visualized.

8. What does overbeaming refer to in computed tomography?

- A. Enhancing image quality by reducing the collimator opening**
- B. Opening the collimators more to allow preumbra to fall outside the active detectors**
- C. Increasing patient dose without affecting image quality**
- D. Lowering the intensity at the active detectors**

Overbeaming in computed tomography refers to the practice of adjusting the collimator settings in such a way that the beam width is increased. This allows the preumbra, which is the area just outside the sharp edge of the main radiation beam, to extend beyond the active detectors. When this occurs, a larger portion of the beam is being used than what the detectors can effectively capture, which may lead to areas of under-utilization of the detected image data and cause potential artifacts or unnecessary exposure. This adjustment is significant because it can affect the radiation dose received by the patient; although the primary intention may not be to enhance image quality per se, the resultant increase in the radiation field can lead to a situation where the patient dose is not optimized versus the resultant image quality. Thus, understanding the balance between overbeaming practices and their implications is essential for ensuring optimal imaging while minimizing unnecessary patient exposure.

9. What advantage did overscan provide in 4th generation CT units?

- A. Increased image resolution**
- B. Reduced motion artifacts**
- C. Faster scan times**
- D. Better contrast resolution**

Overscan in 4th generation CT units provided the advantage of reduced motion artifacts. This technique involved acquiring more data than what was needed for reconstruction of a single slice. By overscanning, the system could capture additional information beyond the boundaries of the intended slice. As a result, if there was any motion during the scan—such as patient movement or organ motion—those artifacts could be minimized during the reconstruction process due to the extra data available. Essentially, the overscan created a buffer of information that helped to ensure smoother and more accurate images, particularly in situations where motion could have otherwise compromised image quality. In contrast, while other options like increased image resolution, faster scan times, and better contrast resolution are noted advancements in CT technology, they were not direct advantages provided specifically by the overscan technique in 4th generation systems.

10. What is a key characteristic of the equilibrium phase in CT?

- A. It starts right after the scanning process**
- B. It follows the non-equilibrium phase**
- C. It alters the dose measurement**
- D. It ends before contrast injection**

The equilibrium phase in computed tomography (CT) is specifically characterized by the stability of contrast agent distribution within the vascular system and surrounding tissues. This phase occurs after the non-equilibrium phase, during which there is a rapid alteration in the concentration of the contrast material. In the equilibrium phase, the distribution of contrast becomes uniform and stable, allowing for clearer imaging of the tissues and vascular structures. This characteristic is essential as it provides the optimal conditions for imaging procedures, ensuring that the diagnostic quality of the scans is maintained. Understanding the relationship between the non-equilibrium and equilibrium phases helps technicians and radiologists plan their scanning strategies effectively to enhance image quality and diagnostic capabilities. Thus, recognizing that the equilibrium phase directly follows the non-equilibrium phase reflects an important aspect of contrast kinetics in CT imaging.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://computedtomographytechnologist.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE