

Comprehensive Guide to Contact, Non-Contact Forces, and Magnetism for Students Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is the purpose of a doorbell's magnet?**
 - A. To light up the doorbell**
 - B. To create sound when pressed**
 - C. To hold the doorbell in place**
 - D. To generate electrical power**

- 2. What happens to the magnetic field when a magnet is broken in half?**
 - A. It disappears entirely**
 - B. Both pieces become magnets with their own poles**
 - C. One piece becomes magnetic and the other does not**
 - D. Only one piece retains its magnetic properties**

- 3. What happens to the tiny magnetic fields within the nail when it is rubbed with a magnet?**
 - A. They disperse randomly.**
 - B. They align with the magnetic field of the bar magnet.**
 - C. They increase in number and strength.**
 - D. They dissolve completely.**

- 4. What materials are required for conducting the falling objects experiment?**
 - A. Three different objects with varying wind resistance**
 - B. Five different objects with the same wind resistance**
 - C. A timer and a low point to drop from**
 - D. Only one object and a stopwatch**

- 5. What does it mean if an object is neutral?**
 - A. It has an equal number of positive and negative charges**
 - B. It can only attract other neutral objects**
 - C. It has only positive charges**
 - D. It has only negative charges**

6. What is air resistance?

- A. A force that pushes objects downwards**
- B. A force that opposes gravity when an object falls**
- C. A force that attracts similar materials**
- D. A force that doesn't affect moving objects**

7. What causes the zap or shock when touching a doorknob?

- A. Physical contact with a metal surface**
- B. Electrical charges jumping from one object to another**
- C. The doorknob storing static electricity**
- D. Friction between clothing and the floor**

8. What material is typically used for making permanent magnets?

- A. Aluminum**
- B. Copper**
- C. Iron**
- D. Plastic**

9. In physics, what does inertia refer to?

- A. The tendency of an object to resist changes in its state of motion**
- B. The effect of gravity on an object**
- C. The net force acting on an object**
- D. The equal distribution of forces on an object**

10. What is the definition of a pull force?

- A. A force that stops an object from moving**
- B. A force that moves an object away from oneself**
- C. A force that draws an object closer to oneself**
- D. A force that only works on objects in motion**

Answers

SAMPLE

1. B
2. B
3. B
4. B
5. A
6. B
7. B
8. C
9. A
10. C

SAMPLE

Explanations

SAMPLE

1. What is the purpose of a doorbell's magnet?

- A. To light up the doorbell
- B. To create sound when pressed**
- C. To hold the doorbell in place
- D. To generate electrical power

The function of a doorbell's magnet is primarily related to sound generation when the button is pressed. When the doorbell is activated, an electrical circuit closes, and the magnet draws a metal striker or component towards it. This movement strikes the bell or produces a sound through a mechanical means. Thus, the action of the magnet is directly tied to generating the audible signal that informs someone inside the house that a visitor is at the door. Other choices, while they touch upon elements related to a doorbell, do not accurately describe the magnet's main purpose. For example, the magnet does not serve to light up the doorbell, hold it in place, or generate electrical power as these functions are achieved through different mechanisms in the doorbell's design.

2. What happens to the magnetic field when a magnet is broken in half?

- A. It disappears entirely
- B. Both pieces become magnets with their own poles**
- C. One piece becomes magnetic and the other does not
- D. Only one piece retains its magnetic properties

When a magnet is broken in half, both pieces become individual magnets with their own north and south poles. This is a fundamental property of magnets: they have a dipole structure, meaning they always possess both a north and a south pole. When a magnet is divided, the magnetic domains within the material rearrange themselves. The atoms in the magnet are aligned in such a way that their magnetic fields reinforce each other. When the magnet is cut, each piece has enough material to maintain this alignment, allowing it to develop its own poles. Therefore, you end up with two smaller magnets, each with a north pole and a south pole, rather than losing the magnetic property altogether or having one piece retain it while the other does not. This phenomenon illustrates the permanence of magnetic properties at a microscopic scale, regardless of how the magnet is physically altered.

3. What happens to the tiny magnetic fields within the nail when it is rubbed with a magnet?

- A. They disperse randomly.
- B. They align with the magnetic field of the bar magnet.**
- C. They increase in number and strength.
- D. They dissolve completely.

When a nail is rubbed with a magnet, the tiny magnetic fields within the nail become aligned with the magnetic field of the bar magnet. The nail is made of ferromagnetic material, which contains domains—regions where magnetic fields are aligned in the same direction. Normally, these domains point in random directions, canceling each other out and making the material not exhibit significant magnetism. When the nail is exposed to an external magnetic field from the bar magnet, the magnetic field influences these domains. As you rub the magnet on the nail, the external magnetic field causes the majority of the domains within the nail to align in the direction of the magnetic field. This alignment enhances the overall magnetic property of the nail, allowing it to become a magnet itself. The other options do not accurately represent the behavior of the magnetic fields in the nail. Dispersing randomly would contradict the process of alignment that actually occurs, and increasing in number and strength is misleading because it is not about the creation of new domains but rather the reorientation of existing ones. The idea of magnetic fields dissolving completely is also incorrect, as the magnetic properties do not disappear during this process; they become enhanced through alignment.

4. What materials are required for conducting the falling objects experiment?

- A. Three different objects with varying wind resistance
- B. Five different objects with the same wind resistance**
- C. A timer and a low point to drop from
- D. Only one object and a stopwatch

The most appropriate materials for conducting the falling objects experiment are focused on the influence of wind resistance on the rate at which objects fall. When selecting objects for this kind of experiment, it is essential to have multiple items that differ in shape, surface area, or mass to effectively observe how varying wind resistance affects their fall. Having five different objects with the same wind resistance would ensure that the experimental variable—wind resistance—is kept constant across the board. This allows for a clearer investigation into how other factors, such as mass or shape, may influence the fall rate of the objects. Thus, the choice of multiple objects specifically highlights the aspect of wind resistance, which is crucial in this context. In contrast, options that suggest fewer materials or don't account for the variability in wind resistance do not provide the same level of insight into the principles of gravity and air resistance. For instance, just one object wouldn't demonstrate the diverse effects of wind resistance at all, and having objects with differing factors while keeping wind resistance constant wouldn't yield the focused results needed for analyzing that specific variable.

5. What does it mean if an object is neutral?

- A. It has an equal number of positive and negative charges**
- B. It can only attract other neutral objects**
- C. It has only positive charges**
- D. It has only negative charges**

An object being neutral means that it has an equal number of positive and negative charges. In atomic terms, neutrality occurs when the number of protons, which carry a positive charge, matches the number of electrons, which carry a negative charge. This balance results in no overall charge, allowing the object to be electrically neutral. While neutrality influences how an object interacts with other charged bodies, it does not restrict the object to only attracting other neutral objects. Therefore, the right understanding of neutrality is tied to the balance of charges rather than the nature of interactions with other objects.

6. What is air resistance?

- A. A force that pushes objects downwards**
- B. A force that opposes gravity when an object falls**
- C. A force that attracts similar materials**
- D. A force that doesn't affect moving objects**

Air resistance is a type of frictional force that acts against the motion of an object moving through the air. When an object falls, air resistance works to oppose the force of gravity, which pulls the object downward. This resistance arises because air molecules collide with the surface of the falling object, creating a force that slows its acceleration and ultimately influences its terminal velocity. In the context of falling objects, air resistance increases with the object's speed and surface area. For example, a skydiver may accelerate initially but will eventually reach a constant speed where the downward force of gravity equals the upward force of air resistance, resulting in no further acceleration. Understanding air resistance is crucial for analyzing motion in a variety of contexts, such as free-fall situations, where its impact becomes particularly significant.

7. What causes the zap or shock when touching a doorknob?

- A. Physical contact with a metal surface
- B. Electrical charges jumping from one object to another**
- C. The doorknob storing static electricity
- D. Friction between clothing and the floor

The zap or shock experienced when touching a doorknob is primarily caused by electrical charges jumping from one object to another. This phenomenon is closely associated with static electricity, which occurs when there is an imbalance of electric charges on the surfaces of materials. When a person walks across a carpet or their clothing rubs against another surface, they can accumulate excess electrons, becoming negatively charged. Upon touching a doorknob, which is usually made of metal, the excess negative charges can rapidly transfer to the doorknob. The sudden movement of these electrical charges is what causes the brief sensation of a shock. The sensation can be startling, but it is generally harmless and is often more intense in dry conditions where static electricity can build up more easily. The other options, while related to the context, do not directly explain the sensation of shock as effectively as the transfer of electrical charges does. For instance, while physical contact with a metal surface can facilitate the transfer of charges, it is specifically the jumping of electrical charges that causes the shock. The doorknob itself can accumulate static electricity, but it is the discharge event at the moment of contact that directly results in the zap. Friction between clothing and the floor contributes to the buildup of static

8. What material is typically used for making permanent magnets?

- A. Aluminum
- B. Copper
- C. Iron**
- D. Plastic

Permanent magnets are typically made from materials that have a high magnetic permeability and can be magnetized to retain their magnetism over time. Iron is one of the most commonly used materials for this purpose because it has excellent magnetic properties. When iron is alloyed with other elements, like cobalt and nickel, it forms stronger permanent magnets such as Alnico or rare-earth magnets. These materials have a strong response to magnetic fields and can maintain a magnetic orientation, making them ideal for use in permanent magnets. Other metals, like aluminum and copper, have low magnetic permeability and do not acquire strong or lasting magnetic properties, thus are not suitable for making permanent magnets. Plastic, being a non-metallic material, cannot be magnetized in the traditional sense, and therefore cannot be used to create permanent magnets. This reinforces the understanding of why iron is the primary choice in permanent magnet production.

9. In physics, what does inertia refer to?

A. The tendency of an object to resist changes in its state of motion

B. The effect of gravity on an object

C. The net force acting on an object

D. The equal distribution of forces on an object

Inertia refers to the tendency of an object to resist changes in its state of motion, which aligns precisely with the characteristics of mass and how it interacts with forces. An object at rest tends to stay at rest, and an object in motion continues to move at a constant velocity unless acted upon by an external force. This fundamental concept is rooted in Newton's First Law of Motion, which describes how the presence or absence of force influences the motion of objects. The more mass an object has, the greater its inertia, making it harder to change its motion. This principle is crucial for understanding various phenomena in physics, from everyday motion to complex mechanical interactions. Other options refer to different principles in physics: gravity relates to the attractive force between masses, net force describes the overall force resulting from combining all acting forces, and equilibrium in force distribution pertains to balanced forces in a static situation. However, these concepts do not encapsulate the essence of inertia.

10. What is the definition of a pull force?

A. A force that stops an object from moving

B. A force that moves an object away from oneself

C. A force that draws an object closer to oneself

D. A force that only works on objects in motion

A pull force is defined as a force that draws an object closer to oneself. This concept is fundamental in understanding how forces interact with objects in our environment. When you exert a pull force on an object, you are causing it to accelerate towards you, which illustrates the nature of interactions between different bodies. For instance, when you tug on a rope or pull a drawer towards you, you are applying a pull force that effectively changes the position of the object in relation to yourself. In contrast, the other options do not accurately describe the nature of a pull force. For example, a force that stops an object from moving represents resistance or friction, not a pulling action. Additionally, a force that moves an object away refers to a push force, which acts in the opposite direction to a pull force. Finally, a force that only works on objects in motion misconstrues the nature of forces because a pull can act on stationary objects as well, as long as there is a mechanism (like a person or mechanical device) applying that force. Understanding these dynamics is critical, especially when analyzing how different forces, including pull and push, work together to affect motion and interaction between objects.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://comprehensiveguidetotocontact.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE