

Commercial Food Equipment Service Association (CFESA) Gas Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What factors determine the gas flow rate through an orifice?**
 - A. Orifice color and shape**
 - B. Orifice size, specific gravity, and gas pressure**
 - C. Orifice length and temperature**
 - D. Orifice orientation and material**
- 2. What type of gas is typically used for heating and cooking in homes?**
 - A. Natural gas**
 - B. Coal gas**
 - C. Carbon dioxide**
 - D. Hydrogen gas**
- 3. What condition can cause a downdraft to occur?**
 - A. Humidity in the atmosphere**
 - B. High outside temperatures**
 - C. Cold outside temperature or high winds**
 - D. Low-pressure systems**
- 4. Which gas measurement tool is used for checking pressure differentials?**
 - A. Thermometer**
 - B. Manometer**
 - C. Calorimeter**
 - D. Barometer**
- 5. What symptom might indicate a problem with the pressure regulator?**
 - A. The equipment operates efficiently**
 - B. The pilot burner goes out when the main burner tries to come on**
 - C. The appliance gets too hot**
 - D. The burners ignite irregularly**

6. What is a significant downside of using a hot surface igniter as a flame sensor?

- A. They can burn out quickly**
- B. They build up a silicon oxide layer that acts as an insulator**
- C. They require constant voltage**
- D. They are susceptible to physical damage**

7. Where is the bypass adjustment located on a BJ thermostat?

- A. At the back of the thermostat**
- B. On the side of the thermostat**
- C. On the front of the thermostat body**
- D. Underneath the thermostat**

8. What is a clear indication of the need to check gas pressure?

- A. Low flame height on gas burners**
- B. Consistent pressure readings**
- C. Excessive usage of gas**
- D. Loud noises from piping**

9. What does the gas code specify regarding the vent of an installed regulator?

- A. The vent must be open to the atmosphere**
- B. The vent can be directed indoors**
- C. The vent must be piped outdoors above the snow line**
- D. The vent must be capped to prevent gas escape**

10. How many byproducts remain after burning one cubic foot of natural or LP gas?

- A. 10**
- B. 15**
- C. 25**
- D. 30**

Answers

SAMPLE

1. B
2. A
3. C
4. B
5. B
6. B
7. C
8. A
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. What factors determine the gas flow rate through an orifice?

- A. Orifice color and shape**
- B. Orifice size, specific gravity, and gas pressure**
- C. Orifice length and temperature**
- D. Orifice orientation and material**

The gas flow rate through an orifice is primarily influenced by several key physical properties and conditions, specifically the size of the orifice, the specific gravity of the gas, and the pressure of the gas. The orifice size is crucial as it dictates the amount of space through which the gas can flow. A larger orifice allows more gas to pass through at a given pressure compared to a smaller one. Specific gravity, which is the ratio of the density of the gas to the density of air, affects the flow characteristics of the gas, including how it interacts with the orifice. Lastly, the gas pressure directly influences the flow rate; higher pressure generally results in increased flow through the orifice. These factors work together to determine how easily gas can flow, which is important for ensuring that appliances receive the correct amount of gas for operation, thus affecting efficiency and safety.

2. What type of gas is typically used for heating and cooking in homes?

- A. Natural gas**
- B. Coal gas**
- C. Carbon dioxide**
- D. Hydrogen gas**

Natural gas is typically used for heating and cooking in homes due to its efficiency, convenience, and safety. It is primarily composed of methane and is delivered through a network of pipelines directly to residences. This gas burns cleanly and produces a high amount of heat for cooking and heating applications while minimizing harmful emissions compared to other fossil fuels. Natural gas is also readily available in many regions, making it a practical choice for residential use. In addition, it usually comes equipped with a reliable infrastructure for distribution and is relatively cost-effective for consumers. This broad availability contributes significantly to its popularity as a heating and cooking fuel in homes. The other options do not serve as viable alternatives for typical home heating and cooking. Coal gas was historically used, but its prevalence has declined significantly due to environmental concerns. Carbon dioxide is a byproduct of combustion and is not a fuel source. Hydrogen gas has potential as a clean fuel, but its current usage in residential heating and cooking is not widespread. Therefore, natural gas remains the standard choice for home heating and cooking applications.

3. What condition can cause a downdraft to occur?

- A. Humidity in the atmosphere
- B. High outside temperatures
- C. Cold outside temperature or high winds**
- D. Low-pressure systems

Downdrafts occur when cold outside temperatures or high winds create a significant pressure difference in the atmosphere. When cold air descends rapidly, it can displace warmer air, leading to a downdraft effect. This phenomenon is often associated with storm systems where the ambient conditions allow for strong, cold air masses to push downward, resulting in increased air movement toward the ground. The swift downward motion of cold air not only contributes to downdrafts but also influences various weather patterns. In contrast, factors such as humidity in the atmosphere and high outside temperatures may contribute to different weather conditions, like the formation of clouds or thunderstorms, but they do not directly cause downdrafts. Similarly, low-pressure systems may also be involved in broader atmospheric dynamics, but the specific conditions of cold air and high winds are the key elements that result in downdraft occurrences.

4. Which gas measurement tool is used for checking pressure differentials?

- A. Thermometer
- B. Manometer**
- C. Calorimeter
- D. Barometer

The manometer is specifically designed to measure pressure differentials, making it the correct choice. It functions by using a U-shaped tube filled with liquid, typically water or mercury, to measure the difference in pressure between two points. This is especially useful in gas applications where ensuring that the pressure is within safe and operational limits is critical. Manometers can be utilized in various settings, including HVAC systems and gas pipelines, to ensure proper operation and safety. Their ability to measure small changes in pressure makes them ideal for these applications, allowing technicians to accurately diagnose issues or verify system functioning. In contrast, the thermometer measures temperature, the calorimeter measures heat transfer in physical and chemical processes, and the barometer measures atmospheric pressure. While each of these tools serves a specific function in different scientific and industrial contexts, they do not provide the capability to measure pressure differentials the way a manometer does. Thus, the manometer is uniquely suited for this specific task in the gas measurement field.

5. What symptom might indicate a problem with the pressure regulator?

- A. The equipment operates efficiently
- B. The pilot burner goes out when the main burner tries to come on**
- C. The appliance gets too hot
- D. The burners ignite irregularly

A symptom that might indicate a problem with the pressure regulator is when the pilot burner goes out when the main burner attempts to ignite. This situation typically arises because the pressure regulator is not maintaining the correct pressure of gas required for the appliance's operation. The pressure regulator is responsible for ensuring that the gas pressure remains within the specifications necessary for proper combustion. If the pressure is too low, the pilot may not stay lit when there is an increased demand for gas, such as when the main burner turns on. In contrast, when equipment operates efficiently or the appliances get too hot, it often suggests that the system is functioning correctly or perhaps has an issue related to something other than the pressure regulator. Irregular ignition of burners could also point to a problem, yet it may involve other factors such as the air-to-gas mixture or the condition of the burners themselves, rather than solely a malfunction of the pressure regulator. Thus, the significance of the pilot burner going out during high-demand situations highlights a direct correlation to the performance of the pressure regulator within the gas system.

6. What is a significant downside of using a hot surface igniter as a flame sensor?

- A. They can burn out quickly
- B. They build up a silicon oxide layer that acts as an insulator**
- C. They require constant voltage
- D. They are susceptible to physical damage

Using a hot surface igniter as a flame sensor presents a significant downside because these igniters can accumulate a silicon oxide layer, which interferes with their functionality. This build-up acts as an insulator, reducing the sensitivity and effectiveness of the flame sensor. A properly functioning flame sensor needs to detect the presence of a flame reliably, and any insulating layer can prevent the sensor from confirming that the flame is active. Thus, the presence of this insulating layer can compromise safety and efficiency in gas appliance operation. The other options describe potential issues related to hot surface igniters, but they do not address the unique impact of the silicon oxide layer on operational efficiency and safety in the same way. For instance, while they can indeed burn out quickly, this does not directly affect their role as a flame sensor. Similarly, requiring constant voltage and susceptibility to physical damage are valid considerations, but they do not pose as direct an operational impairment as the insulating layer does regarding flame detection.

7. Where is the bypass adjustment located on a BJ thermostat?

- A. At the back of the thermostat**
- B. On the side of the thermostat**
- C. On the front of the thermostat body**
- D. Underneath the thermostat**

The bypass adjustment on a BJ thermostat is located on the front of the thermostat body. This placement allows for easy access and visibility, ensuring that adjustments can be made without needing to disassemble or heavily manipulate the thermostat. The front position provides convenience during operations and maintenance, enabling technicians to quickly make necessary tweaks to optimize performance or calibrate the thermostat adequately. By positioning the adjustment at the front, manufacturers ensure that it is user-friendly, allowing for quick adjustments in response to varying operational needs. This feature is essential for maintaining accurate temperature control in commercial cooking environments, where precision is critical.

8. What is a clear indication of the need to check gas pressure?

- A. Low flame height on gas burners**
- B. Consistent pressure readings**
- C. Excessive usage of gas**
- D. Loud noises from piping**

The need to check gas pressure can indeed be clearly indicated by a low flame height on gas burners. When the gas pressure is insufficient, it impacts the proper functioning of the burner, leading to inadequate combustion and a flame that is not optimal in height. The flame should be a certain height and color for efficient burning; low flame height often suggests that there is not enough gas reaching the burner, possibly due to low gas pressure. In contrast, consistent pressure readings would typically mean that the system is functioning correctly and does not signal a need for checking the gas pressure. Excessive usage of gas might indicate a different issue, such as a malfunctioning appliance but doesn't directly correlate with the need to check pressure. Loud noises from piping could point to issues like leaks or blockages, but again, do not specifically indicate gas pressure problems. Therefore, low flame height serves as a clear and direct sign that gas pressure may need to be examined to ensure safe and efficient appliance operation.

9. What does the gas code specify regarding the vent of an installed regulator?

- A. The vent must be open to the atmosphere**
- B. The vent can be directed indoors**
- C. The vent must be piped outdoors above the snow line**
- D. The vent must be capped to prevent gas escape**

The correct response is that the vent must be piped outdoors above the snow line, as this is essential for safety and functionality. When venting a gas regulator, it is crucial to ensure that the venting is done properly to allow any gas vented away from the regulator to disperse safely. Venting to the outdoors prevents the accumulation of potentially hazardous gas inside buildings, which could pose an explosion or asphyxiation risk. Additionally, placing the vent above the snow line is particularly important in areas prone to heavy snowfall. Snow or ice accumulation over the vent could obstruct gas flow or cause a dangerous buildup of gas. By ensuring the vent is above the snow line, you enhance safety and compliance with gas codes designed to mitigate any risk associated with gas venting.

10. How many byproducts remain after burning one cubic foot of natural or LP gas?

- A. 10**
- B. 15**
- C. 25**
- D. 30**

When natural gas or LP gas is burned, the primary byproducts produced are carbon dioxide (CO₂) and water vapor (H₂O). The question asks about the total number of byproducts remaining after combustion, which can include not only these main products but also smaller amounts of other combustion byproducts like carbon monoxide (CO), various nitrogen compounds, and trace amounts of sulfur compounds, among others. While the number might vary based on combustion efficiency and conditions, the industry acknowledges that a range of about 25 distinct byproducts can typically be identified when analyzing combustion gases. This number reflects both the dominant and trace elements resulting from the combustion of gas, including those from impurities in the fuel itself. Therefore, the most accurate answer among those given is indeed 25, representing various compounds produced during combustion. This understanding reinforces the importance of proper combustion processes for safety and efficiency in gas appliances, as well as the need for ventilation to dissipate combustion byproducts effectively.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://cfesagas.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE