

Clover Learning Radiography Image Production Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. The area of the x-ray beam that is projected towards the patient is known as what?**
 - A. Tungsten filament**
 - B. Cathode filament**
 - C. Effective focal spot**
 - D. Actual focal spot**

- 2. In a series circuit with resistances of 4 ohms, 6 ohms, and 10 ohms, what is the total resistance of the circuit?**
 - A. 2.40 ohms**
 - B. 20 ohms**
 - C. 24 ohms**
 - D. 240 ohms**

- 3. What is the maximum energy of x-ray photons in the exposure made with 96 kilovoltage peak (kVp)?**
 - A. 0.2 kiloelectron volts (keV)**
 - B. 96 kiloelectron volts (keV)**
 - C. 192 kiloelectron volts (keV)**
 - D. 320 kiloelectron volts (keV)**

- 4. Which electrical component is essential for converting AC into DC in the x-ray circuit?**
 - A. Autotransformer**
 - B. Transformer**
 - C. Rectifier**
 - D. Capacitor**

- 5. Increasing milliamperage (mA) results in which of the following changes?**
 - A. Increased beam quantity and increased beam quality**
 - B. Increased beam quantity and decreased beam quality**
 - C. Increased beam quantity**
 - D. Increased beam quality**

6. What is the primary function of the back-up timer in radiography?

- A. Prevent over-exposure to the receptor**
- B. Prevent over-exposure to the patient**
- C. Ensure adequate receptor exposure**
- D. Ensure adequate image contrast**

7. What is the secondary (output) voltage of the autotransformer when the assigned tube potential is 110 kilovoltage peak (kVp)?

- A. 220 kilovolts (kV)**
- B. 220 volts (V)**
- C. 110 kilovolts (kV)**
- D. 110 volts (V)**

8. Which of the following best refers to beam quality?

- A. Highest photon energy**
- B. Average photon energy**
- C. Grays (Gy)**
- D. Sieverts (Sv)**

9. What combination of exposure factors results in the highest quantity x-ray beam?

- A. 82 kVp and 3.5 mm Al filtration**
- B. 82 kVp and 2.5 mm Al filtration**
- C. 96 kVp and 2.5 mm Al filtration**
- D. 96 kVp and 3.5 mm Al filtration**

10. A radiograph is acquired using 200 milliamperes (mA) and an exposure time of 200 milliseconds (ms). What new exposure time must be used to obtain the same receptor exposure if the radiograph is repeated with 300 mA?

- A. 89 ms**
- B. 133 ms**
- C. 300 ms**
- D. 450 ms**

Answers

SAMPLE

1. C
2. B
3. B
4. C
5. C
6. B
7. D
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. The area of the x-ray beam that is projected towards the patient is known as what?

- A. Tungsten filament**
- B. Cathode filament**
- C. Effective focal spot**
- D. Actual focal spot**

The area of the x-ray beam that is projected towards the patient is referred to as the effective focal spot. This is an important concept in radiography, as the effective focal spot size influences the resolution and sharpness of the image produced. The effective focal spot represents the area from which x-rays are emitted and is impacted by the geometry of the x-ray tube and the angle of the anode. In contrast, the actual focal spot refers to the physical area on the anode surface where the electrons collide, which is typically larger than the effective focal spot. The tungsten filament and cathode filament are related to the generation of electrons in the x-ray tube, but they do not define the area of the x-ray beam directed at the patient. Therefore, identifying the effective focal spot as the area projected towards the patient clarifies its crucial role in influencing image quality in radiographic imaging.

2. In a series circuit with resistances of 4 ohms, 6 ohms, and 10 ohms, what is the total resistance of the circuit?

- A. 2.40 ohms**
- B. 20 ohms**
- C. 24 ohms**
- D. 240 ohms**

In a series circuit, the total resistance is calculated by simply adding together the individual resistances. This is because the total resistance in a series configuration increases with each additional resistor. For the given circuit with resistances of 4 ohms, 6 ohms, and 10 ohms, the calculation involves: Total Resistance = 4 ohms + 6 ohms + 10 ohms = 20 ohms. Thus, the total resistance of the circuit is indeed 20 ohms.

Understanding this principle is essential for analyzing electrical circuits, as it demonstrates how resistors affect the overall current flow within the system.

3. What is the maximum energy of x-ray photons in the exposure made with 96 kilovoltage peak (kVp)?

- A. 0.2 kiloelectron volts (keV)**
- B. 96 kiloelectron volts (keV)**
- C. 192 kiloelectron volts (keV)**
- D. 320 kiloelectron volts (keV)**

The maximum energy of x-ray photons produced during an exposure is determined by the kilovoltage peak (kVp) setting on the x-ray machine. When set at 96 kVp, this means the highest energy x-ray photons generated can reach up to 96 kiloelectron volts (keV). This relationship exists because kVp represents the peak voltage applied to the x-ray tube, which accelerates electrons toward the anode. When these high-speed electrons collide with the target material (typically tungsten), they produce x-rays. While most of the emitted x-rays will have lower energies, the maximum photon energy produced during this interaction cannot exceed the energy equivalent of the kVp setting. Therefore, in this case, the maximum energy of x-ray photons is 96 keV, which correlates directly with the 96 kVp setting. Other options represent energies that do not correspond to the maximum achievable energy at this kVp setting, thus making them incorrect.

4. Which electrical component is essential for converting AC into DC in the x-ray circuit?

- A. Autotransformer**
- B. Transformer**
- C. Rectifier**
- D. Capacitor**

In an x-ray circuit, the rectifier is crucial for converting alternating current (AC) into direct current (DC). This conversion is necessary because x-ray production requires a stable and consistent flow of electric current. AC flows back and forth, making it unsuitable for the stable operation of x-ray tubes, which need DC to maintain a steady voltage and ensure efficient electron flow from the cathode to the anode. The rectifier uses semiconductor materials to allow current to flow in one direction only, effectively blocking the negative half cycles of the AC waveform. This process results in a pulsating DC that provides the necessary consistent voltage for x-ray generation. While the autotransformer is used for voltage manipulation, and the transformer is used to change voltage levels in the circuit, neither of them converts AC to DC. The capacitor, on the other hand, can smooth out the pulsating output from the rectifier but does not perform the conversion itself. Therefore, the rectifier stands as the essential component for this function in the x-ray circuit.

5. Increasing milliamperage (mA) results in which of the following changes?

- A. Increased beam quantity and increased beam quality**
- B. Increased beam quantity and decreased beam quality**
- C. Increased beam quantity**
- D. Increased beam quality**

Increasing milliamperage (mA) primarily affects the quantity of x-rays produced during an exposure. When mA is increased, a greater number of electrons flow from the cathode to the anode in the x-ray tube, resulting in the production of more x-ray photons. This is referred to as an increase in beam quantity. While beam quality is influenced by factors such as kilovoltage (kV), the relationship between mA and beam quality is not direct. Therefore, while the increase in mA leads to a higher output of x-ray photons, it does not enhance the penetrating ability of these photons. So, the increase in mA is associated solely with an increase in beam quantity, not quality. In this context, the option that indicates an increase only in beam quantity accurately reflects the effect of increasing milliamperage.

6. What is the primary function of the back-up timer in radiography?

- A. Prevent over-exposure to the receptor**
- B. Prevent over-exposure to the patient**
- C. Ensure adequate receptor exposure**
- D. Ensure adequate image contrast**

The primary function of the back-up timer in radiography is to prevent over-exposure to the patient. The back-up timer is a safety mechanism that acts as a safeguard during the exposure process. It ensures that even if the automatic exposure control (AEC) system fails to terminate the exposure at the appropriate time, the exposure will be halted after a predetermined duration, thus reducing the risk of unnecessary radiation to the patient. This feature is particularly important because excessive exposure can lead to increased radiation dose and potential harm to the patient's health. By having a back-up timer that limits the exposure time, radiographers can ensure that patients are not subjected to prolonged radiation exposure, which is a critical aspect of maintaining radiation safety standards. While options related to receptor exposure and image contrast are relevant to the overall quality of radiographic images, they do not specifically address the protective role the back-up timer serves in patient safety. Therefore, the emphasis on preventing over-exposure directly to the patient makes this function vital in ensuring the well-being of individuals undergoing radiographic procedures.

7. What is the secondary (output) voltage of the autotransformer when the assigned tube potential is 110 kilovoltage peak (kVp)?

- A. 220 kilovolts (kV)**
- B. 220 volts (V)**
- C. 110 kilovolts (kV)**
- D. 110 volts (V)**

To determine the secondary (output) voltage of the autotransformer when the assigned tube potential is 110 kilovoltage peak (kVp), it is important to understand the functions of the autotransformer in a radiographic imaging system. The autotransformer serves to adjust the high voltage output, which ultimately dictates the potential applied across the x-ray tube. In the context of radiography, the tube potential or kVp represents the maximum voltage that can be applied to the x-ray tube, influencing both the quality and penetrability of the x-rays produced. When the kVp is specified as 110 kVp, this indicates that the appropriate output from the autotransformer will also align with this specified tube potential. Thus, when the kVp setting is 110, the secondary voltage of the autotransformer is directly correlated to that setting. In radiographic practice, the output to the x-ray tube typically matches the required kVp directly due to operational design; this means the autotransformer adjusts to provide an exact secondary voltage of 110 kilovolts (kV). The other options reflect either incorrect units (volts instead of kilovolts) or an inflated value of 220 kilovolts, which does not represent

8. Which of the following best refers to beam quality?

- A. Highest photon energy**
- B. Average photon energy**
- C. Grays (Gy)**
- D. Sieverts (Sv)**

Beam quality refers to the ability of the x-ray beam to penetrate matter, which is largely determined by the average energy of the photons in the beam. The higher the average photon energy, the greater the beam quality, as it can more effectively penetrate tissues and other materials. When discussing beam quality in radiography, it is essential to focus on the average photon energy instead of just the highest photon energy, as the average provides a more meaningful measure of the effectiveness of the beam in diagnostic imaging. Regarding the other options, while the highest photon energy might indicate the presence of some very high-energy photons, it does not provide a comprehensive understanding of the beam quality as a whole. Grays (Gy) and Sieverts (Sv) are units of measurement for absorbed dose and biological effect of radiation, respectively, and do not directly relate to the concept of beam quality in terms of energy characteristics.

9. What combination of exposure factors results in the highest quantity x-ray beam?

- A. 82 kVp and 3.5 mm Al filtration**
- B. 82 kVp and 2.5 mm Al filtration**
- C. 96 kVp and 2.5 mm Al filtration**
- D. 96 kVp and 3.5 mm Al filtration**

The combination that produces the highest quantity of x-ray beam is characterized by higher kilovoltage peak (kVp) settings and appropriate filtration. In this case, the selection of 96 kVp with 2.5 mm Al filtration is optimal for producing a greater quantity of x-rays. Higher kVp settings increase the energy and penetration power of the x-ray beam. This means that more x-ray photons are generated with higher kinetic energy, which contributes to an overall increase in quantity and quality of the beam. Additionally, while filtration is necessary to remove low-energy x-ray photons that do not contribute to image quality and may increase patient dose, using 2.5 mm of Al filtration strikes a balance; it effectively filters out less useful radiation without excessively reducing the quantity of the beam. When comparing the other options, it's evident that the lower kVp settings (like 82 kVp) would naturally result in fewer high-energy photons being produced, diminishing the overall quantity of the x-ray beam. Moreover, while increasing the filtration to 3.5 mm in other choices can reduce some unnecessary low-energy x-ray emissions, the reduction in overall x-ray photons produced outweighs that benefit, particularly when paired with the lower kVp of 82. Therefore

10. A radiograph is acquired using 200 milliamperes (mA) and an exposure time of 200 milliseconds (ms). What new exposure time must be used to obtain the same receptor exposure if the radiograph is repeated with 300 mA?

- A. 89 ms**
- B. 133 ms**
- C. 300 ms**
- D. 450 ms**

To maintain the same receptor exposure when changing the milliamperage (mA), you can apply the inverse relationship between mA and exposure time. When the mA is increased, the exposure time must be decreased to keep the total milliampere-seconds (mAs) constant, which is crucial for achieving consistent receptor exposure. In this case, the initial exposure is calculated using: $\text{mAs} = \text{mA} \times \text{time in seconds}$ First, convert milliseconds to seconds: 200 milliseconds = 0.2 seconds Now, calculate the initial mAs: $\text{mAs} = 200 \times 0.2 = 40 \text{ mAs}$ Now, if the mA is increased to 300, you need to find the new exposure time that will yield the same mAs of 40 mAs. The equation can be rearranged to solve for time: $\text{time} = \frac{\text{mAs}}{\text{mA}}$ Substituting in the known

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://cloverlearninggradimageprod.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE