CertMaster CE Security+ Domain 4.0 Security Operations Practice Exam (Sample)

Study Guide

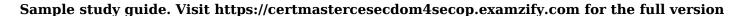
Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.


Questions

- 1. Which remediation practice refers to measures put in place to mitigate the risk of a vulnerability when it cannot be directly eliminated?
 - A. Fixing controls
 - B. Risk acceptance
 - C. Compensating controls
 - **D.** Documentation
- 2. What could be a consequence of not managing password vaulting in an organization?
 - A. Enhancement of user convenience
 - B. Higher rates of data breaches
 - C. Reduced system performance
 - D. Increased innovation in security
- 3. What is one of the critical components when managing user accounts to minimize security risks?
 - A. Linking user accounts to system performance
 - B. Monitoring user compliance
 - C. Regularly updating permissions
 - D. Allowing unlimited access for efficiency
- 4. What is one significant function of Data Loss Prevention (DLP) technology in an organization?
 - A. Encrypting all outgoing communication
 - B. Monitoring compliance training for employees
 - C. Restricting the copying of sensitive data to authorized media and services
 - D. Managing software updates across the infrastructure

- 5. Which combination of data sources should an incident response analyst primarily consider to trace the origin and pathway of a network breach?
 - A. Network-based vulnerability scanner logs, firewall logs, and OS-specific security logs
 - B. Intrusion Detection System alerts, antivirus reports, and employee access logs
 - C. User activity logs, system performance metrics, and application error logs
 - D. Network traffic analysis, database access logs, and physical security records
- 6. What principle guides the assignment of permissions to ensure minimal access rights?
 - A. Separation of duties
 - B. Principle of least privilege
 - C. Need-to-know basis
 - D. Shared responsibility model
- 7. When dealing with sensitive data, what measure is implemented to improve security?
 - A. Implementing data encryption only
 - B. Using multifactor authentication (MFA)
 - C. Regularly changing passwords
 - D. Using a single-factor authentication method
- 8. What approach should an information security manager consider to optimize a SIEM system's alerting capability?
 - A. Configuring the SIEM system to alert on account creation
 - B. Configuring the SIEM system to alert when multiple login failures for the same account occur within a specified time period
 - C. Configuring the SIEM system to ignore all alerts from specified IP addresses
 - D. Configuring the SIEM system to log all accounts without alerts

- 9. What is the action of isolating affected components from the larger environment called?
 - A. Eradication
 - **B.** Containment
 - C. Investigation
 - **D. Recovery**
- 10. What is one effective way a system administrator can combat false positives in vulnerability alerts?
 - A. Review logs
 - **B.** Use different scanners
 - C. Ignore the alerts
 - D. Contact the vendor for updates

Answers

- 1. C 2. B 3. C

- 3. C 4. C 5. B 6. B 7. B 8. B 9. B 10. A

Explanations

- 1. Which remediation practice refers to measures put in place to mitigate the risk of a vulnerability when it cannot be directly eliminated?
 - A. Fixing controls
 - B. Risk acceptance
 - C. Compensating controls
 - D. Documentation

The correct choice is compensating controls, as this term specifically refers to alternative measures implemented to reduce the risk associated with a security vulnerability when direct remediation—like fixing the vulnerability—is not feasible. Compensating controls are designed to provide equivalent protection or to lessen the impact of the risk, thus improving the overall security posture despite the presence of an unaddressed vulnerability. For instance, if a specific software vulnerability cannot be patched immediately, a compensating control might involve implementing additional monitoring measures or enhancing network segmentation to prevent exploitation of that flaw. This allows an organization to continue operating securely while working towards a long-term solution. The other options, while relevant in a security context, do not align as well with the notion of mitigating risk when direct elimination of a vulnerability is not possible. Fixing controls more directly implies implementing fixes or adjustments rather than providing an alternative risk management strategy. Risk acceptance involves acknowledging a risk without any specific measures put in place, which does not actively mitigate the risk. Documentation serves to record processes and findings but does not in itself address vulnerabilities. Thus, compensating controls is the most accurate and appropriate remediation practice in the scenario described.

- 2. What could be a consequence of not managing password vaulting in an organization?
 - A. Enhancement of user convenience
 - B. Higher rates of data breaches
 - C. Reduced system performance
 - D. Increased innovation in security

Not managing password vaulting in an organization can significantly lead to higher rates of data breaches. A password vault is designed to securely store and manage passwords for different accounts and applications. If an organization fails to implement a proper password vaulting strategy, several risks arise. Firstly, employees may resort to using weak passwords, reusing the same passwords across multiple systems, or even noting them down in insecure places. These practices can easily lead to unauthorized access to sensitive data and systems, making it easier for attackers to compromise accounts and lead to data breaches. Moreover, without a managed approach to password vaulting, organizations may struggle to enforce password policies, leading to inconsistencies in how passwords are handled. This lack of control can create vulnerabilities that malicious actors exploit. With the modern landscape of cyber threats, where attackers can utilize credential stuffing and other techniques, not managing password vaulting places organizations in a precarious position. Establishing clear password management practices is crucial for enhancing overall security posture by minimizing the risk of breaches resulting from poor password practices.

- 3. What is one of the critical components when managing user accounts to minimize security risks?
 - A. Linking user accounts to system performance
 - B. Monitoring user compliance
 - C. Regularly updating permissions
 - D. Allowing unlimited access for efficiency

Regularly updating permissions is crucial in managing user accounts to minimize security risks. Over time, users may change roles or leave the organization, and their access levels should reflect their current responsibilities. If permissions are not updated, users might retain access to sensitive data or systems that they no longer need for their job functions. This practice helps ensure that the principle of least privilege is upheld, meaning users only have the access necessary to perform their work. Keeping permissions current also mitigates the risk of insider threats and reduces the chances of unauthorized access, which can lead to data breaches or other security incidents. In contrast, linking user accounts to system performance does not contribute to security risk management, as it focuses more on operational efficiency rather than access control. Monitoring user compliance, while necessary for ensuring users adhere to policies, does not directly address permissions and can only help after potential risks have been identified. Allowing unlimited access for efficiency directly contradicts security best practices, as it increases exposure to vulnerabilities and unauthorized access.

- 4. What is one significant function of Data Loss Prevention (DLP) technology in an organization?
 - A. Encrypting all outgoing communication
 - B. Monitoring compliance training for employees
 - C. Restricting the copying of sensitive data to authorized media and services
 - D. Managing software updates across the infrastructure

Data Loss Prevention (DLP) technology plays a crucial role in safeguarding sensitive information within an organization. One of its significant functions is the ability to restrict the copying of sensitive data to authorized media and services. This means that DLP solutions can monitor and control how data is accessed, used, and transferred, ensuring that sensitive information, such as personal identifiable information (PII) or intellectual property, does not leave the organization through unauthorized channels. By implementing policies that define what constitutes sensitive data and where it can be stored or transmitted, DLP helps to minimize the risk of data breaches, both accidental and intentional. This ensures that only approved personnel and systems can handle critical information, thereby protecting the organization from potential data leaks that could result in serious legal and financial repercussions. In contrast, the other options focus on different aspects of security management that do not directly align with the core functionalities of DLP technology. Encrypting outgoing communications is a vital security measure but is more about protecting data in transit rather than actively preventing data loss. Monitoring compliance training is fundamental for employee awareness but does not pertain to the direct protection of data. Managing software updates is essential for maintaining system integrity and security but does not relate to preventing the loss of sensitive information itself. Therefore,

- 5. Which combination of data sources should an incident response analyst primarily consider to trace the origin and pathway of a network breach?
 - A. Network-based vulnerability scanner logs, firewall logs, and **OS-specific security logs**
 - B. Intrusion Detection System alerts, antivirus reports, and employee access logs
 - C. User activity logs, system performance metrics, and application error logs
 - D. Network traffic analysis, database access logs, and physical security records

The most effective combination of data sources to trace the origin and pathway of a network breach includes intrusion detection system alerts, antivirus reports, and employee access logs. Intrusion detection system alerts are crucial for identifying potential unauthorized access or anomalous behavior within the network. These alerts can provide immediate insights into the actions being taken by attackers, showing patterns that could indicate the pathway of the breach. Antivirus reports are essential for understanding whether malware has been present on the systems. They can help detect specific threats and give context on how these threats may have originated and spread within the network. Employee access logs are significant in establishing which users accessed which resources and when. By analyzing these logs, investigators can pinpoint potentially compromised accounts or unauthorized access that might have facilitated the breach. This combination of data sources provides a comprehensive view necessary for accurately tracing incidents. While the other choices might provide valuable information, they do not combine the proactive detection capabilities of intrusion detection systems, the threat assessments from antivirus logs, and the accountability from employee access tracking as effectively as this option does.

- 6. What principle guides the assignment of permissions to ensure minimal access rights?
 - A. Separation of duties
 - B. Principle of least privilege
 - C. Need-to-know basis
 - D. Shared responsibility model

The principle that guides the assignment of permissions to ensure minimal access rights is the Principle of Least Privilege. This principle stipulates that individuals or systems should only be granted the minimum level of access necessary to perform their job functions. By adhering to this principle, organizations can significantly reduce the risk of unauthorized access and potential data breaches. When users are given excessive permissions, the potential for misuse, whether intentional or accidental, increases. Implementing the Principle of Least Privilege means carefully assessing the specific permissions needed for each role within the organization and continuously reviewing those permissions to maintain security. This practice not only enhances security but also limits the attack surface, making it more difficult for attackers to gain access to sensitive information or critical systems. In contrast, other options deal with different aspects of security and access management. For example, the separation of duties focuses on dividing responsibilities among multiple people to prevent fraud and errors. The need-to-know basis is relevant to information sharing and ensures that individuals have access only to information necessary for their roles. The shared responsibility model typically applies to cloud computing services, delineating the security responsibilities of both the service provider and the customer. While all these concepts contribute to a comprehensive security strategy, the Principle of Least Privilege directly addresses the

- 7. When dealing with sensitive data, what measure is implemented to improve security?
 - A. Implementing data encryption only
 - B. Using multifactor authentication (MFA)
 - C. Regularly changing passwords
 - D. Using a single-factor authentication method

Using multifactor authentication (MFA) to secure sensitive data is an effective measure as it significantly enhances security by requiring multiple forms of verification before granting access to information or systems. MFA typically combines something the user knows (like a password), something the user has (such as a smartphone or security token), and sometimes something the user is (biometric verification, like a fingerprint). This layered approach makes it substantially more difficult for unauthorized users to gain access, as they would need to compromise multiple authentication factors to succeed. In contrast, implementing data encryption alone, while crucial for protecting data at rest and in transit, does not address identity verification and access control. Regularly changing passwords can help, but if a user's password is weak or compromised, this measure alone does not provide strong security. Lastly, using a single-factor authentication method is the least secure option, as it relies solely on one form of verification, making it easier for attackers to gain unauthorized access.

- 8. What approach should an information security manager consider to optimize a SIEM system's alerting capability?
 - A. Configuring the SIEM system to alert on account creation
 - B. Configuring the SIEM system to alert when multiple login failures for the same account occur within a specified time period
 - C. Configuring the SIEM system to ignore all alerts from specified IP addresses
 - D. Configuring the SIEM system to log all accounts without alerts

Configuring the SIEM system to alert when multiple login failures for the same account occur within a specified time period is an effective approach to optimizing the alerting capability. This method focuses on detecting potential brute-force attacks or unauthorized access attempts. By monitoring and alerting on multiple failures, security teams can quickly identify suspicious behavior, enabling them to respond promptly to potential threats before they escalate into successful breaches. This approach helps to filter out noise from the system, as it specifically targets a pattern of behavior that is indicative of malicious activity rather than benign events like routine account creations or normal login activities. Alerting on excessive login failures is a strategic choice, as it balances the need for security vigilance without overwhelming the security team with alerts that may not represent genuine threats. This targeted approach also facilitates prioritization in incident response, allowing security personnel to focus on the most critical alerts that could signify significant security issues. This makes the SIEM system more effective at reducing false positives and enhancing the overall security posture of the organization.

9. What is the action of isolating affected components from the larger environment called?

- A. Eradication
- **B.** Containment
- C. Investigation
- **D. Recovery**

The action of isolating affected components from the larger environment is referred to as containment. This is a critical step during an incident response process, especially in cybersecurity and information security contexts. When an incident occurs, such as a malware infection or a data breach, it is essential to prevent the threat from spreading to other parts of the network or system. Containment aims to limit the damage and secure the environment to mitigate the risks associated with the incident. By isolating the affected systems or components, organizations can address the issue while ensuring that other unaffected parts of their infrastructure remain operational and secure. This step is often taken before any further investigation or eradication of the threat occurs, helping to maintain control over the situation until a clearer picture of the incident is available. In contrast, eradication refers to the removal of the threat once it has been contained, while investigation involves analyzing the incident to understand its cause and impact. Recovery focuses on restoring affected systems and services to normal operations following an incident. Each of these steps is part of a comprehensive incident response plan, but containment specifically emphasizes the need to isolate the issue to prevent further harm.

10. What is one effective way a system administrator can combat false positives in vulnerability alerts?

- A. Review logs
- B. Use different scanners
- C. Ignore the alerts
- D. Contact the vendor for updates

A system administrator can effectively combat false positives in vulnerability alerts by reviewing logs. This process allows the administrator to investigate the context surrounding the alerts and understand the circumstances under which the vulnerabilities were flagged. By examining log entries related to the alerts, the administrator can identify patterns or specific conditions that lead to a false positive. Reviewing logs can also help in correlating alerts with system behavior, user activities, and any recent changes that might have triggered the alert. This thorough analysis is essential in discerning whether an alert is a genuine concern or simply a result of the scanning tool misinterpreting benign activity. In comparison, the other options provide limited or ineffective strategies. While using different scanners might yield varying results, it does not address the underlying issue of false positives effectively. Ignoring the alerts can lead to significant security risks, as genuine vulnerabilities may go unaddressed. Contacting the vendor for updates can be useful, but it is more reactive and does not provide immediate insights into the legitimacy of current alerts. Thus, reviewing logs encompasses a proactive and insightful method for validating alerts and minimizing unnecessary alarm.