

Certified Hyperbaric Technologist Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

- 1. According to ASME PVHO-2, how often should a seat and seal inspection be performed?**
 - A. Every 3 years**
 - B. Every 5 years**
 - C. Every 10 years**
 - D. Every 12 years**

- 2. Which electrode site is known to be the least accurate for TcpO₂ readings?**
 - A. Plantar surface of the foot**
 - B. Forehead**
 - C. Chest**
 - D. Upper arm**

- 3. Which of the following correctly describes carbon monoxide?**
 - A. Colored, odorless, and tasteless**
 - B. Colorful and irritating**
 - C. Colorless, odorless, tasteless, and non-irritating**
 - D. Odorless, but leaves a metallic taste**

- 4. What should be monitored in patients receiving hyperbaric oxygen therapy who are at risk for seizures?**
 - A. Fluid intake**
 - B. Seizure frequency**
 - C. Partial pressure of oxygen**
 - D. Visceral pain levels**

- 5. According to studies on exceptional blood loss anemia, how should treatment with HBO be administered?**
 - A. Only when symptoms worsen**
 - B. As a one-time procedure**
 - C. As often as necessary to alleviate symptoms**
 - D. In combination with blood transfusions**

- 6. According to the Krogh Erlang model, at 1 ATA on air, how far can oxygen diffuse from functioning capillaries?**
- A. 32 microns**
 - B. 64 microns**
 - C. 128 microns**
 - D. 256 microns**
- 7. At a PO₂ of 2000 mmHg, by how much does the oxygen diffusion distance increase compared to that at 1 ATA?**
- A. 2 times**
 - B. 3 times**
 - C. 4 times**
 - D. 5 times**
- 8. When do delayed neurological sequelae (DNS) typically become apparent after a CO poisoning episode?**
- A. 1-3 days**
 - B. 4-6 days**
 - C. 7-21 days**
 - D. More than 21 days**
- 9. Which of the following statements about middle ear maintenance in hyperbaric conditions is true?**
- A. Adequate training helps prevent barotrauma**
 - B. Only medical intervention can prevent barotrauma**
 - C. Barotrauma is unavoidable in all patients**
 - D. Only experienced divers can manage ear pressure**
- 10. What is the consequence of the cuff of an ET tube losing its seal in a hyperbaric chamber?**
- A. Increased pressure in the chamber**
 - B. Dislodgement of the tube**
 - C. Improved ventilation**
 - D. Compression of the lungs**

Answers

SAMPLE

- 1. C**
- 2. A**
- 3. C**
- 4. C**
- 5. C**
- 6. B**
- 7. C**
- 8. C**
- 9. A**
- 10. B**

SAMPLE

Explanations

SAMPLE

1. According to ASME PVHO-2, how often should a seat and seal inspection be performed?

- A. Every 3 years**
- B. Every 5 years**
- C. Every 10 years**
- D. Every 12 years**

The choice of every 10 years for a seat and seal inspection aligns with the guidance established by ASME PVHO-2 standards, which provide rules for the safe operation of hyperbaric equipment. Regular inspections of seats and seals are critical to maintain the integrity and safety of pressure vessels, ensuring they function properly and do not pose a danger to users. The 10-year interval strikes a balance between preventing potential failures and minimizing operational downtime, representing an industry standard approach to maintenance and safety assessment. Conducting inspections at this interval allows for effective monitoring of the condition of seals and seat integrity while avoiding both excessive maintenance costs and the risks associated with prolonged periods without evaluation.

2. Which electrode site is known to be the least accurate for TcpO₂ readings?

- A. Plantar surface of the foot**
- B. Forehead**
- C. Chest**
- D. Upper arm**

The plantar surface of the foot is considered the least accurate site for TcpO₂ (transcutaneous oxygen tension) readings due to several physiological factors. This area often has varying blood flow and temperature, which can significantly affect the accuracy of oxygen measurements. The foot contains a dense network of arteries and veins, and peripheral circulation may be compromised due to various conditions, such as peripheral vascular disease. Additionally, the skin on the plantar surface is thicker than on other parts of the body, which may contribute to delayed readings and inconsistencies in TcpO₂ values. Other sites, such as the forehead, chest, and upper arm, are generally more reliable due to better perfusion and a thinner layer of skin, allowing for more accurate transcutaneous measurements. The forehead, in particular, benefits from good blood flow and is frequently used in clinical settings as a standard site for TcpO₂ monitoring.

3. Which of the following correctly describes carbon monoxide?

- A. Colored, odorless, and tasteless**
- B. Colorful and irritating**
- C. Colorless, odorless, tasteless, and non-irritating**
- D. Odorless, but leaves a metallic taste**

The correct characterization of carbon monoxide is that it is colorless, odorless, tasteless, and non-irritating. This description is critical because carbon monoxide is a gas produced by incomplete combustion of fossil fuels and can be highly dangerous due to its ability to be undetected by human senses. Understanding that it is non-irritating is particularly important in the context of safety, as individuals may not experience immediate warning signs such as irritation in the eyes, nose, or throat that typically indicate the presence of harmful substances. This lack of sensory feedback increases the risk of exposure, as people may not realize they are breathing in this toxic gas. Additionally, recognizing that carbon monoxide is tasteless reinforces the necessity for carbon monoxide detectors in homes and workplaces to provide alerts about its presence, given that personal sensory detection is ineffective. This knowledge is vital for anyone working in environments where combustion occurs, as it informs safety protocols and preventive measures.

4. What should be monitored in patients receiving hyperbaric oxygen therapy who are at risk for seizures?

- A. Fluid intake**
- B. Seizure frequency**
- C. Partial pressure of oxygen**
- D. Visceral pain levels**

In patients receiving hyperbaric oxygen therapy who are at risk for seizures, monitoring the partial pressure of oxygen is particularly crucial. Hyperbaric oxygen therapy involves administering oxygen at pressures greater than normal atmospheric pressure, which significantly increases the amount of dissolved oxygen in the blood. Elevated levels of oxygen can lead to hyperoxia, which can induce seizures in susceptible individuals. By closely monitoring the partial pressure of oxygen, healthcare providers can adjust the therapy to ensure that oxygen levels remain within a safe range, minimizing the risk of adverse effects such as seizures. Thus, understanding and managing the oxygen levels are vital in preventing complications during hyperbaric therapy for those at elevated risk.

5. According to studies on exceptional blood loss anemia, how should treatment with HBO be administered?

- A. Only when symptoms worsen**
- B. As a one-time procedure**
- C. As often as necessary to alleviate symptoms**
- D. In combination with blood transfusions**

Treatment for exceptional blood loss anemia typically involves the administration of hyperbaric oxygen (HBO) therapy in a manner that is responsive to the patient's ongoing needs and symptoms. This approach acknowledges that anemia can lead to significant hypoxia, and the objective of HBO therapy is to enhance oxygen delivery to tissues, thereby alleviating symptoms of fatigue, weakness, and other complications related to inadequate oxygenation. The correct choice emphasizes that HBO should be administered as often as necessary to address and alleviate symptoms, allowing healthcare providers to tailor treatment to the patient's condition dynamically. This continuous and responsive approach is crucial in managing the effects of blood loss, as the situation may evolve and require varying levels of therapeutic intervention. In contrast, limiting HBO therapy to only when symptoms worsen or administering it as a one-time procedure could leave patients at risk for ongoing hypoxia and related complications. Furthermore, relying solely on blood transfusions without the complementary use of HBO may not provide sufficient oxygenation for tissues, especially in emergency or acute settings. Thus, the most effective management strategy is to provide HBO therapy as needed based on the patient's symptoms and overall clinical status.

6. According to the Krogh Erlang model, at 1 ATA on air, how far can oxygen diffuse from functioning capillaries?

- A. 32 microns**
- B. 64 microns**
- C. 128 microns**
- D. 256 microns**

In understanding the Krogh Erlang model, it is important to recognize that this model describes how oxygen diffuses from capillaries into surrounding tissues. At 1 atmosphere absolute (ATA) pressure on air, the diffusion distance of oxygen from functioning capillaries is approximately 64 microns. This value is based on the balance of oxygen consumption in tissues and the rate at which oxygen can diffuse through the tissue. The distance of 64 microns is significant because it illustrates the limits of oxygen diffusion under standard atmospheric conditions. Beyond this distance, the concentration gradient of oxygen becomes insufficient for effective diffusion, which could potentially lead to areas of the tissue not receiving adequate oxygen supply. This concept is crucial for understanding both normal physiological processes and the implications of hyperbaric treatments, where changes in pressure can alter diffusion dynamics. The other values represent distances that are either too short or too long based on the established diffusion parameters proposed by the Krogh Erlang model. Therefore, the choice of 64 microns as the correct answer reflects a foundational understanding of how oxygen transport occurs at the level of microvascular circulation in tissues.

7. At a PO₂ of 2000 mmHg, by how much does the oxygen diffusion distance increase compared to that at 1 ATA?

- A. 2 times**
- B. 3 times**
- C. 4 times**
- D. 5 times**

At a partial pressure of oxygen (PO₂) of 2000 mmHg, one must consider how the diffusion of oxygen is influenced by this high-pressure environment compared to a standard atmospheric pressure (1 ATA, which is approximately 760 mmHg). Oxygen diffusion distance is significantly affected by the pressure of the gas. According to Fick's laws of diffusion, the amount of gas that can diffuse through a given area is directly proportional to the pressure. When the pressure increases, the density of the gas increases, which subsequently alters the gradient for diffusion. At 1 ATA, the diffusion distance is considered to be at its baseline. If the pressure triples, as it does when moving from 1 ATA to 2000 mmHg, the diffusion distance effectively increases due to the increased force driving the oxygen molecules across the gradient. In this case, the increase is exponential in nature. At 2000 mmHg, which is approximately 2.63 ATA (since 2000 mmHg divided by 760 mmHg is about 2.63), the diffusion distance is roughly four times greater than at standard atmospheric pressure. This conclusion is derived from the understanding that diffusion distance can be modeled as being proportional to the square root of

8. When do delayed neurological sequelae (DNS) typically become apparent after a CO poisoning episode?

- A. 1-3 days**
- B. 4-6 days**
- C. 7-21 days**
- D. More than 21 days**

Delayed neurological sequelae (DNS) after carbon monoxide (CO) poisoning typically become apparent between 7 to 21 days post-exposure. This timeframe is crucial because it highlights the lag between the initial poisoning event and the subsequent development of neurological symptoms. In many cases, individuals may appear to recover or show only mild symptoms immediately following the exposure. However, the neurotoxic effects of carbon monoxide can manifest later, particularly in patients with more severe initial symptoms or prolonged exposure. Research suggests that factors such as the duration of exposure, the concentration of CO inhaled, and previous health conditions can influence this delayed response. By 7 to 21 days, patients may begin to experience cognitive deficits, movement disorders, and other neurological issues as part of the delayed sequelae. Recognizing this timeline is crucial for healthcare practitioners, as it informs monitoring and management strategies for individuals who have suffered CO poisoning. Immediate assessment and treatment are critical, but awareness of potential late-onset symptoms ensures ongoing evaluation and support for affected patients.

9. Which of the following statements about middle ear maintenance in hyperbaric conditions is true?

- A. Adequate training helps prevent barotrauma**
- B. Only medical intervention can prevent barotrauma**
- C. Barotrauma is unavoidable in all patients**
- D. Only experienced divers can manage ear pressure**

Adequate training helps prevent barotrauma because it empowers individuals to understand the physiological changes that occur during pressure variations, particularly in the middle ear. Proper training teaches techniques for equalizing pressure, such as the Valsalva maneuver or the Toynbee maneuver, enabling patients to adapt to the increasing pressure encountered in a hyperbaric chamber. In hyperbaric conditions, the difference in pressure between the outer ear and the middle ear can lead to discomfort or injury if not properly managed. Training provides knowledge about the importance of performing these equalization techniques at appropriate times during the descent and ascent phases. This proactive approach is crucial in minimizing the risk of barotrauma, which can cause damage to the ear structures due to pressure imbalances. Other choices incorrectly suggest that barotrauma is unavoidable or that it requires medical intervention alone, disregarding the crucial role of education and training in prevention. Additionally, the idea that only experienced divers can manage ear pressure is misleading, as individuals can be trained effectively regardless of their prior diving experience.

10. What is the consequence of the cuff of an ET tube losing its seal in a hyperbaric chamber?

- A. Increased pressure in the chamber**
- B. Dislodgement of the tube**
- C. Improved ventilation**
- D. Compression of the lungs**

When the cuff of an endotracheal (ET) tube loses its seal in a hyperbaric chamber, the primary consequence is the dislodgement of the tube. The cuff is designed to create a seal within the trachea, ensuring that gas can be delivered effectively to the patient and preventing the aspiration of secretions. If the cuff fails to maintain its seal, the pressure differential between the positive pressure in the hyperbaric chamber and the ambient pressure in the trachea can lead to an inability to ventilate adequately. This may result in the ET tube being pushed out of position, as the loss of pressure support could allow the tube to migrate or slide out of the trachea. Maintaining the integrity of the cuff is essential to ensure that mechanical ventilation can be performed safely and effectively in a hyperbaric environment. If the cuff loses its integrity, not only is ventilation compromised, but it can also increase the risk of complications such as aspiration or hypoventilation, demanding immediate attention to restore proper airway management.