

Certified Flight Registered Nurse (CFRN) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. How is cardiac output (CO) calculated?**
 - A. Stroke volume x heart rate**
 - B. Stroke volume ÷ systemic resistance**
 - C. Heart rate - mean arterial pressure**
 - D. Heart rate ÷ stroke**

- 2. Bilateral closed femur fractures could result in a blood loss of:**
 - A. 500 ml**
 - B. 1,000 ml**
 - C. 1,500 ml**
 - D. 2,000 ml**

- 3. In the context of shock, what role does the body initially play in response to low perfusion?**
 - A. Activate inflammatory pathways**
 - B. Trigger compensatory mechanisms**
 - C. Increase body temperature**
 - D. Deplete glucose stores**

- 4. What does calcitonin help regulate in the body?**
 - A. Blood sugar levels**
 - B. Blood calcium levels**
 - C. Blood pressure levels**
 - D. Respiratory rate**

- 5. Which symptom is NOT typically associated with pheochromocytoma?**
 - A. Acute myocardial infarction**
 - B. Congestive heart failure**
 - C. Cerebrovascular accident**
 - D. Gastrointestinal bleeding**

6. Which processes are essential components of cellular respiration?

- A. Oxidative respiration**
- B. Adenosine triphosphate (ATP) breakdown**
- C. Semi-permeable membrane respiration**
- D. Cellular respiration**

7. Which of the following is a symptom of adrenal insufficiency?

- A. Increased stress tolerance**
- B. Weight loss**
- C. Increased energy levels**
- D. Increased muscle mass**

8. When is homeostasis maintained in the body?

- A. When serum lactate levels rise**
- B. When the supply of oxygen is sufficient to meet cellular demands**
- C. When there is a high carbon dioxide levels**
- D. When there is a decrease in heart rate**

9. Microorganisms capable of causing disease are called:

- A. Pathogens**
- B. Fomites**
- C. Vectors**
- D. Hosts**

10. How does the oxygen content of the fetus compare to that of the pregnant mother?

- A. Lower**
- B. Higher**
- C. The same**
- D. Indeterminate**

Answers

SAMPLE

1. A
2. D
3. B
4. B
5. D
6. D
7. B
8. B
9. A
10. A

SAMPLE

Explanations

SAMPLE

1. How is cardiac output (CO) calculated?

- A. Stroke volume x heart rate**
- B. Stroke volume ÷ systemic resistance**
- C. Heart rate - mean arterial pressure**
- D. Heart rate ÷ stroke**

Cardiac output (CO) is defined as the volume of blood the heart pumps per minute and is a crucial parameter in assessing the heart's efficiency and overall circulatory function. The formula for calculating cardiac output is expressed as stroke volume multiplied by heart rate. Stroke volume refers to the amount of blood pumped by the left ventricle during each contraction, while heart rate is the number of times the heart beats in one minute. When you multiply these two values together, you obtain the total volume of blood ejected by the heart in one minute, which is the cardiac output. This relationship illustrates how both the force and frequency of heartbeats contribute to the amount of blood flowing through the circulatory system, making it essential for understanding various cardiovascular conditions and making informed clinical decisions.

2. Bilateral closed femur fractures could result in a blood loss of:

- A. 500 ml**
- B. 1,000 ml**
- C. 1,500 ml**
- D. 2,000 ml**

In the context of bilateral closed femur fractures, significant internal bleeding can occur due to the extensive vascular supply of the femur and surrounding tissues. Each femur can be associated with a considerable amount of blood loss, with estimates suggesting that fractures can lead to approximately 1,500 ml of blood loss, especially when both femurs are fractured simultaneously. While options indicating lower volumes may reflect more minor injuries or single fractures, the choice of 2,000 ml accurately reflects the potential combined blood loss from two severe fractures in a critical scenario. This amount accounts for not only the direct vascular injury from the fractures themselves but also for additional factors such as hemolysis, the body's response to trauma, and potential loss from other associated injuries that may occur during the same incident. Therefore, the selected answer highlights the severity of bilateral closed femur fractures as they can lead to extensive blood loss, underscoring the importance of rapid assessment and management of potential hypovolemia in such trauma cases.

3. In the context of shock, what role does the body initially play in response to low perfusion?

- A. Activate inflammatory pathways**
- B. Trigger compensatory mechanisms**
- C. Increase body temperature**
- D. Deplete glucose stores**

In cases of shock, when the body experiences low perfusion, it activates compensatory mechanisms as an initial response to maintain adequate blood flow and oxygen delivery to vital organs. These mechanisms include increased heart rate, vasoconstriction, and enhanced respiratory effort, all aimed at improving tissue perfusion despite the challenges posed by shock states. Activation of these compensatory mechanisms serves to stabilize blood pressure and redirect blood flow away from less critical areas (like the skin and gastrointestinal tract) towards more vital organs (such as the heart and brain). This response is crucial in the early stages of shock, as it can help mitigate damage to tissues and organs until appropriate medical intervention can be provided. While inflammatory pathways may be activated following the initial compensatory response, and changes in temperature and glucose metabolism may occur later as shock progresses, the primary immediate response to low perfusion is the triggering of these compensatory mechanisms.

4. What does calcitonin help regulate in the body?

- A. Blood sugar levels**
- B. Blood calcium levels**
- C. Blood pressure levels**
- D. Respiratory rate**

Calcitonin is a hormone produced by the thyroid gland that plays a crucial role in regulating blood calcium levels in the body. Its primary function is to lower the concentration of calcium in the blood when it becomes elevated, ensuring that calcium levels remain within a normal range. When blood calcium levels rise, calcitonin acts to inhibit the activity of osteoclasts, the cells responsible for breaking down bone tissue, which leads to a decrease in the release of calcium into the bloodstream. Additionally, calcitonin promotes the excretion of calcium through the kidneys, further helping to lower calcium levels in the blood. In contrast, the other options relate to different bodily functions that are not regulated by calcitonin. Blood sugar levels are primarily regulated by insulin and glucagon, blood pressure is generally managed through a complex interaction of hormonal and neural regulation involving various factors, and respiratory rate is controlled by the brain's respiratory centers in response to the body's oxygen and carbon dioxide levels. Therefore, the regulation of blood calcium levels is the specific function of calcitonin.

5. Which symptom is NOT typically associated with pheochromocytoma?

- A. Acute myocardial infarction**
- B. Congestive heart failure**
- C. Cerebrovascular accident**
- D. Gastrointestinal bleeding**

Pheochromocytoma is a catecholamine-secreting tumor usually found in the adrenal gland, leading to an excess production of catecholamines such as epinephrine and norepinephrine. This overproduction can result in a variety of systemic effects, primarily linked to increased sympathetic nervous system activity. While acute myocardial infarction, congestive heart failure, and cerebrovascular accidents are all potential complications associated with the heightened cardiovascular risk due to the effects of excess catecholamines, gastrointestinal bleeding is not typically associated with pheochromocytoma. The symptoms and complications related to pheochromocytoma are often cardiovascular in nature due to the tumor's effect on blood pressure regulation and cardiac strain. Acute myocardial infarction can occur due to increased heart rate and blood pressure leading to myocardial ischemia. Congestive heart failure may arise as a result of chronic hypertension and cardiac overload. Cerebrovascular accidents can happen if there are sudden spikes in blood pressure, which may lead to hemorrhagic strokes. In contrast, gastrointestinal bleeding is generally not a direct symptom of pheochromocytoma. While catecholamines can influence blood flow to the gastrointestinal tract, the condition is not typically associated with bleeding in the GI system. Therefore, considering these

6. Which processes are essential components of cellular respiration?

- A. Oxidative respiration**
- B. Adenosine triphosphate (ATP) breakdown**
- C. Semi-permeable membrane respiration**
- D. Cellular respiration**

Cellular respiration is a fundamental metabolic process that occurs within cells to convert biochemical energy from nutrients into adenosine triphosphate (ATP), which cells use for energy. The statement that cellular respiration itself is an essential component recognizes that it encompasses multiple stages, including glycolysis, the Krebs cycle, and oxidative phosphorylation. Each of these stages plays a critical role in the overall process of extracting energy from glucose and other molecules. While oxidative respiration is a significant part of cellular respiration, it is only one aspect of the broader process. ATP breakdown is a separate metabolic process that occurs after ATP is produced and used for energy, so it is not considered a main component of cellular respiration itself. The concept of semi-permeable membrane respiration is not an established term in the context of cellular respiration and may lead to confusion regarding the actual processes involved. Thus, recognizing cellular respiration as an essential component is crucial for understanding how energy is produced and utilized in biological systems, and it encompasses various biochemical pathways necessary for life.

7. Which of the following is a symptom of adrenal insufficiency?

- A. Increased stress tolerance**
- B. Weight loss**
- C. Increased energy levels**
- D. Increased muscle mass**

Weight loss is a symptom of adrenal insufficiency due to the insufficient production of adrenal hormones, particularly cortisol. In adrenal insufficiency, the body is unable to effectively respond to stress and regulate various bodily functions, which can lead to a decrease in appetite and subsequent weight loss. This condition can also result in fatigue, weakness, and other systemic symptoms, further contributing to an overall decline in health and often leading to unintended weight loss. In contrast, increased stress tolerance would not be associated with adrenal insufficiency because a reduced ability to cope with stress is a hallmark of the condition. Similarly, individuals with adrenal insufficiency typically experience decreased energy levels and fatigue rather than an increase, and there would not be an increase in muscle mass, as hormonal imbalances can lead to weakness and muscle wasting instead.

8. When is homeostasis maintained in the body?

- A. When serum lactate levels rise**
- B. When the supply of oxygen is sufficient to meet cellular demands**
- C. When there is a high carbon dioxide levels**
- D. When there is a decrease in heart rate**

Homeostasis in the body is primarily maintained when the supply of oxygen is sufficient to meet cellular demands. Oxygen is crucial for cellular metabolism, particularly in the production of adenosine triphosphate (ATP), which is the energy currency of cells. When cells receive adequate oxygen, they can efficiently perform their functions, maintain energy levels, and support overall bodily functions, contributing to a stable internal environment. When oxygen supply is compromised, it can lead to anaerobic metabolism, which produces lactate and can result in metabolic acidosis. Elevated serum lactate levels reflect an imbalance in the metabolic state and indicate that homeostasis is not being maintained. High carbon dioxide levels can also disrupt homeostasis, leading to respiratory acidosis, which further complicates the body's ability to maintain equilibrium. Similarly, a decrease in heart rate might seem like a stable state, but it could indicate inadequate perfusion or a response to other factors that may not align with a stable internal environment. Therefore, the capacity for the body to maintain homeostasis is heavily reliant on having an adequate oxygen supply to support cellular activity.

9. Microorganisms capable of causing disease are called:

- A. Pathogens**
- B. Fomites**
- C. Vectors**
- D. Hosts**

Pathogens are microorganisms, such as bacteria, viruses, fungi, and parasites, that have the potential to cause disease in a host organism. These agents can invade the body, multiply, and produce effects that disrupt normal bodily functions, leading to illness. Understanding pathogens is crucial in nursing practice, especially in scenarios like infection control and management within flight nursing, where maintaining a sterile environment and preventing the spread of infectious diseases is vital. Fomites refer to inanimate objects or surfaces that can carry and transmit pathogens, whereas vectors are living organisms, typically arthropods, that can transmit pathogens to humans through bites or other means. Hosts are organisms that can harbor the pathogens and may become ill as a result. Recognizing the distinction between these terms is essential in understanding the dynamics of infection and disease transmission, particularly when providing medical care in various environments, including aerial medical transport.

10. How does the oxygen content of the fetus compare to that of the pregnant mother?

- A. Lower**
- B. Higher**
- C. The same**
- D. Indeterminate**

The oxygen content of the fetus is lower than that of the pregnant mother primarily due to the physiological differences in their circulatory systems and the process of placental oxygen transfer. In a pregnant woman, oxygen is carried in the blood primarily bound to hemoglobin, which is more effective in adults due to higher oxygen saturation levels. The fetal hemoglobin has a higher affinity for oxygen than adult hemoglobin, allowing the fetus to extract oxygen from maternal blood across the placenta. Despite this efficient transfer, the overall concentration of oxygen in the fetal blood is still lower than what is found in the maternal blood because the fetus is extracting a portion of oxygen from a lower arterial saturation in the mother. Furthermore, in the event of certain maternal conditions, such as hypoxemia or anemia, the oxygen content available to the fetus can be further diminished. This leads to a critical understanding that, although the fetus has mechanisms to maximize its oxygen uptake, the absolute oxygen content in the fetal circulation remains lower compared to that in the mother's circulation.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://cfrn.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE